Skip to main content

World's 1st 'Biological Computer' Can Read DNA

Technion and Scripps have developed the world's first biological computer composed of DNA molecules on a gold-coated chip, which can accept as many as one billion programs


Thursday, February 09, 2012:  US scientists have developed the world's first 'biological computer' composed entirely of DNA molecules constructed on a gold-coated chip, which can accept as many as one billion programs and can decipher images encrypted on DNA chips.

The Technion (Israel Institute of Technology) and a team from Scripps Research Institute in California have developed the biological computer. In the research, when suitable software was applied to the biological computer, the scientists found that it could decrypt, separately, fluorescent images of Scripps Research Institute and Technion logos. This is the first experimental demonstration of a molecular cryptosystem of images based on DNA computing, say the scientists led by Prof Ehud Keinan. 
"In contrast to electronic computers, there are computing machines in which all four components are nothing but molecules," says Keinan. "For example, all biological systems, and even entire living organisms, are such computers. Every one of us is a bio-molecular computer, that is, a machine in which all four components are molecules "talking" to one another in a logical manner."

The world's first biological computer integrates complex biological molecules in form of hardware and software in these devices. These biological molecules activate one another to carry out some predetermined chemical work, says Keinan. The computer uses molecules for both input and output. For input, a molecule undergoes specific, predetermined changes, following a specific set of rules (software); the output of this chemical computation process is another well-defined molecule.

The biological computer is "built" by combining chemical components into a solution in a tube. Various small DNA molecules are mixed in solution with selected DNA enzymes and ATP. The latter is used as the energy source of the device, reports TOI.

The results are published this week in the Journal of the American Chemical Society by Prof. Ehud Keinan. "An equally significant breakthrough is the incorporation of chips as an integral part of the computer," he says.

Comments

Popular posts from this blog

Silent headset lets users quietly commune with computers

Advances in voice recognition technology have seen it become a more viable form of computer interface, but it's not necessarily a quieter one. To prevent the click-clacking of keyboards being replaced by noisy man-machine conversations, MIT researchers are developing a new system called AlterEgo that allows people to talk to computers without speaking and listen to them without using their ears. At first glance, the AlterEgo headpiece looks like the product of a design student who didn't pay attention in class. Instead of the familiar combination of an earpiece and microphone, the device is a cumbersome white plastic curve like the jawbone of some strange animal that hangs off the wearer's ear and arcs over to touch the chin. It might look strange, but it's based on some fairly sophisticated technology. Inside the Alterego are electrodes that scan the jaw and face from neuromuscular signals produced when the wearer thinks about verbalizing words without

Qualcomm showcases the Snapdragon S4 ahead of Mobile World Congress

We’ve already heard about Qualcomm’s latest processor, the Snapdragon S4 , which will be quad-core and utilize LTE. Qualcomm took the time to give us some details ahead of Mobile World Congress. The new SoC now supports up to three cameras (two in the back for 3D and one front-facing), 20-megapixels, and recording video at 1080p (30fps). We can also expect zero shutter lag, 3A processing (autofocus, auto exposure and auto white balance), and improved blink/smile detection, gaze estimation, range finding and image stabilization. Last but not least, it supports gesture detection/control, augmented reality , and computer vision (via Qualcomm’s FastCV). Hit the break for a couple of videos featuring image stabilization and gestures.

Say Hello To Darkness In WhatsApp With Dark Mode

WhatsApp has rolled one of the most requested feature, Dark mode for all users across the globe. It is available as a part of the latest update on Android and iOS devices. Dark mode is a new design feature in WhatsApp that offers a fresh look on familiar experience and designed to reduce eye strain in low light conditions. There are many people in the planet who find dark backgrounds easier to look at for long time period, Dark mode is for them. Dark mode consumes less power especially your device has an AMOLED display. Above all, Dark mode looks cool and offers you a refreshing change from the White color theme.  Enabling dark mode in WhatsApp is very easy. Here's the steps:  1. Open WhatsApp from the home screen. 2. Tap More Options. (Three vertical dots on the top right corner of the app) 3. Choose Settings. 4. Select Chats from the Settings menu. 5. Click On Theme. 6. In the Choose Theme dialog box, select Dark to turn on Dark mode. Choose Light to turn