Skip to main content

Tegris: Thermoplastic composite takes on carbon fiber

Spartanburg, South Carolina, is home to one of the largest privately owned chemical and textile research establishments in the world, Milliken & Company. The firm's innovative research that combines textiles and chemistry has now produced a thermoplastic composite called Tegris that is cheap, recyclable and tough. These properties make Tegris an attractive alternative to (or composite partner for) carbon fiber, and it's already proving to have wide ranging applications in the automotive, military and sporting industries.

Tough, cheap and 100 percent recyclable

With increasing demand for lighter and more fuel efficient vehicles using more environmentally-sustainable products, newer polypropylene-based products lay claim to being both green and cheap. Recent developments in additive and resin technologies have improved the performance, ease of production and range of applications for polymers such as polypropylene, particularly Tegris and a rival product named Pure from Dutch textiles manufacturer The Royal Lankhorst Euronete Group.
By collaborating with its clients, Milliken has been able to leverage its new technologies in interesting ways. One example is a carbon fiber/Tegris/carbon fiber sandwich that has equal stiffness to a carbon fiber-only structure, yet is 18 percent lighter, more damage tolerant and requires twice the energy to break. Another is an aluminum/Tegris/aluminum sandwich construction, which takes three times the energy to break.

The production process

Tegris starts out as a series of polypropylene (PP) films that form a tape yarn within a polymer matrix - for composite processing - before being woven into fabric. This is then pressed under heat and pressure to form a single piece approximately 0.005 inch (0.13 mm) that weighs just 0.02 lbs/sq.ft (0.11 kg/sq.m).
Sheet and plate is typically available in 0.125 inch, 0.250 inch and 0.500 inch thick sizes, so multiple layers are added depending on the required thickness. The NASCAR Aero splitters made from the material are typically 100 layers thick (1/2 inch or 12mm).
The outer layers are melted together to perform a similar function to that of resin in fiberglass products. From here, the sheet can be formed into a variety of shapes using heat and pressure, depending on the mold. The end result contains no fragment-producing glass, has high impact resistance and retains strength from around 180 degrees F down to -40F, as well as being easier on the production molds.
To put this into perspective, whilst having similar properties to carbon fiber, (the company claims 70 percent of the strength) Tegris won't shatter on impact, is approximately a tenth the cost, and is fully recyclable.

Applications

Tegris is already seeing use as protective armor by the U.S. military in its vehicles, primarily against IEDs. There's also such diverse applications as small watercraft, helmets, outdoor furniture and baggage.
Tumi, a high end luggage manufacturer which holds Tumi the exclusive rights for Tegris in the travel goods market, is already using the material in its new Tegra-Lite collection. This includes a range of packing cases and smaller carry-on baggage that claim enhanced durability, impact resistance and less weight. All very desirable attributes for baggage when traveling.


Another outfit that appreciates the lightness and toughness of the material is Riddell, makers of body armor for football players. Its Lightspeed Shoulder Pads are claimed to be the lightest in the business without compromising protection. 

In the automotive racing world, as mentioned, Tegris is being used in NASCAR racing for Aero splitters, as well as some door panels. Powerstream Industries has further developed the process to suit the equally harsh road racing environment, using CNC-machined pockets in a sheet of Tegris which is inlayed with high density foam and covered with a cap layer of Tegris that is then heat formed back into one piece, achieving a high level of rigidity."Much of our development is to create advanced duplex composite panels to compete against carbon fiber," says Powerstream's Chris Meurett. "But with approximately 50 times the impact resistance."Tegris can also be glued or threaded to accept mechanical fasteners. "We have done extensive testing with various adhesives designed for polypropylene and have found the bond unsatisfactory for our use," Meurett adds. "The very best way to bond Tegris to Tegris is through a consolidation process using heat and pressure on a platen press which when heated to the correct temperature essentially turn 2 pieces into 1."


Comments

Popular posts from this blog

Silent headset lets users quietly commune with computers

Advances in voice recognition technology have seen it become a more viable form of computer interface, but it's not necessarily a quieter one. To prevent the click-clacking of keyboards being replaced by noisy man-machine conversations, MIT researchers are developing a new system called AlterEgo that allows people to talk to computers without speaking and listen to them without using their ears. At first glance, the AlterEgo headpiece looks like the product of a design student who didn't pay attention in class. Instead of the familiar combination of an earpiece and microphone, the device is a cumbersome white plastic curve like the jawbone of some strange animal that hangs off the wearer's ear and arcs over to touch the chin. It might look strange, but it's based on some fairly sophisticated technology. Inside the Alterego are electrodes that scan the jaw and face from neuromuscular signals produced when the wearer thinks about verbalizing words without...

Water purification: Running fuel cells on bacteria to purify water

Researchers in Norway have succeeded in getting bacteria to power a fuel cell. The "fuel" used is wastewater, and the products of the process are purified water droplets and electricity. This is an environmentally-friendly process for the purification of water derived from industrial processes and suchlike. It also generates small amounts of electricity -- in practice enough to drive a small fan, a sensor or a light-emitting diode. In the future, the researchers hope to scale up this energy generation to enable the same energy to be used to power the water purification process , which commonly consists of many stages, often involving mechanical and energy-demanding decontamination steps at its outset. Nature's own generator The biological fuel cell is powered by entirely natural processes -- with the help of living microorganisms. "In simple terms, this type of fuel cell works because the bacteria consume the waste materials found in the water," explains SINTEF...

Harry Potter and the Cursed Child

Small Intro About Harry Potter and the Cursed Child Based on an original new story by J.K. Rowling, Jack Thorne and John Tiffany, Harry Potter and the Cursed Child is a new play by Jack Thorne. It is the eighth story in the Harry Potter series and the first official Harry Potter story to be presented on stage. It was always difficult being Harry Potter and it isn’t much easier now that he is an overworked employee of the Ministry of Magic, a husband and father of three school-age children. While Harry grapples with the past that refuses to stay where it belongs, his youngest son Albus must struggle with the weight of a family legacy he never wanted. As past and present fuse ominously, both father and son learn the uncomfortable truth: sometimes, darkness comes from unexpected places. Harry Potter and the Cursed Child is one play presented in two Parts, which are intended to be seen in order on the same day (matinee and evening) or on two consecutive evenings. ...