Skip to main content

Rubber sheets harness body movement to power electrical devices

Engineers from Princeton University have developed power-generating rubber films that could be used to harness natural body movements such as breathing or walking in order to power electronic devices such as pacemakers or mobile phones. The material, which is composed of ceramic nanoribbons embedded onto silicone rubber sheets, generates electricity when flexed and is highly efficient at converting mechanical energy into electrical energy.

Its developers say shoes made of the material could harvest the pounding of walking or running to power mobile electrical devices and, when placed against the lungs, sheets of the material could use the raising and falling breathing motions of the chest to power pacemakers. This would negate the current need for surgical replacement of the batteries which power the devices.
Plus, because the silicone is biocompatible and is already used for cosmetic implants and medical devices, “the new electricity-harvesting devices could be implanted in the body to perpetually power medical devices, and the body wouldn't reject them," said Michael McAlpine, a professor of mechanical and aerospace engineering, at Princeton, who led the project to develop the material.
To produce the material the researchers first fabricated lead zirconate titanate (PZT) nanoribbons in strips so narrow that 100 fit side by side in a space of a millimeter. PZT is a ceramic material that is piezoelectric, meaning it generates an electrical voltage when pressure is applied to it. Of all piezoelectric materials, PZT is the most efficient, able to convert 80% of the mechanical energy applied to it into electrical energy.
"PZT is 100 times more efficient than quartz, another piezoelectric material," said McAlpine. "You don't generate that much power from walking or breathing, so you want to harness it as efficiently as possible."
In a separate process, the team then embedded these ribbons into clear sheets of silicone rubber, creating what they call "piezo-rubber chips.” The Princeton team is the first to successfully combine silicone and nanoribbons of PZT.
In addition to generating electricity when it is flexed, the opposite is true: the material flexes when electrical current is applied to it. This opens the door to other kinds of applications, such as use for microsurgical devices, McAlpine said.
"The beauty of this is that it's scalable," said Yi Qi, a postdoctoral researcher who works with McAlpine. "As we get better at making these chips, we'll be able to make larger and larger sheets of them that will harvest more energy."
A paper on the new material, titled "Piezoelectric Ribbons Printed onto Rubber for Flexible Energy Conversion," was published online Jan. 26, in Nano Letters

Comments

Popular posts from this blog

Nine government sites hit by cyber attacks: NIC

The National Informatics Center (NIC) has revealed that as many as nine government websites were defaced by recent cyber attacks. The center further said that the servers, which hosts these government sites, suffer a number of hacking attempts on a daily basis. The websites www.kumbh2010haridwar.gov.in, www.ueppcb.uk.gov.in, www.gov.ua.nic.in/ujn, www.cdodoon.gov.in, www.arunachal.nic.in,www.bee-india.nic.in, www.civilsupplieskerala.gov.in, www.mpcb.gov.in and www.informatics.nic.in were  defaced , prompting authorities to  ramp up  the cyber security safeguards. In an RTI reply, the NIC, which reports to the Ministry of Communications and Information Technology, said that it was impossible for the body to accurately quantify these attacks but they are usually blocked by security controls put in place. The Ministry was asked to provide details of hacking attempts made on the governments websites in the last ten years (2001-11) along with url names of the portal...

Google and Stanford early adopters of Honda Fit EV

Honda's first all-electric vehicle is hitting the streets a little early. The  Honda Fit EV  debuted at the Los Angeles Auto Show in November 2011, and it's expected to be     available for lease this summer. However,  Honda announced  that Google and Stanford University got a special early delivery of the tiny EV this week.The Honda Fit EV is equipped with a 20kWh lithium ion battery, and has an EPA estimated driving range of 76 miles. Google added the EV to its  car -sharing service for employees, dubbed the G-Fleet, in    Mountain View, Calif. The search giant maintains several electric and plug-in vehicles that it uses for research and to cart Googlers around town and between buildings on campus. Stanford University also is an early adopter of the Fit EV, but will be using it primarily for research. The university's automotive research department will study the difference in psychological and physical reactions of using battery...

Solar car hits U.S. in round-the-world jaunt

Last October, the SolarWorld GT solar-powered car set out from Darwin, Australia on a drive around the world. It has since driven 3,001 kilometers (1,865 miles) across Australia, logged 1,947 km (1,210 miles) crossing New Zealand and been shipped across the Pacific Ocean. This Friday, it will embark on the U.S. leg of its journey, as it sets out across America from the University of California, Santa Barbara.   The SolarWorld GT is the result of a collaboration between solar panel manufacturer SolarWorld, and Bochum University of Applied Sciences in Germany. The four-wheeled, two-door, two-seat car gathers solar energy through photovoltaic panels built into its roof, with its solar generator offering a peak performance of 823 watts. Custom hub motors are located in both of the front wheels. The vehicle manages an average speed of 50 km/h (31 mph), with a claimed top speed of 100 km/h (62 mph). In order to demonstrate that solar powered cars needn't be a radical...