Skip to main content

Rubber sheets harness body movement to power electrical devices

Engineers from Princeton University have developed power-generating rubber films that could be used to harness natural body movements such as breathing or walking in order to power electronic devices such as pacemakers or mobile phones. The material, which is composed of ceramic nanoribbons embedded onto silicone rubber sheets, generates electricity when flexed and is highly efficient at converting mechanical energy into electrical energy.

Its developers say shoes made of the material could harvest the pounding of walking or running to power mobile electrical devices and, when placed against the lungs, sheets of the material could use the raising and falling breathing motions of the chest to power pacemakers. This would negate the current need for surgical replacement of the batteries which power the devices.
Plus, because the silicone is biocompatible and is already used for cosmetic implants and medical devices, “the new electricity-harvesting devices could be implanted in the body to perpetually power medical devices, and the body wouldn't reject them," said Michael McAlpine, a professor of mechanical and aerospace engineering, at Princeton, who led the project to develop the material.
To produce the material the researchers first fabricated lead zirconate titanate (PZT) nanoribbons in strips so narrow that 100 fit side by side in a space of a millimeter. PZT is a ceramic material that is piezoelectric, meaning it generates an electrical voltage when pressure is applied to it. Of all piezoelectric materials, PZT is the most efficient, able to convert 80% of the mechanical energy applied to it into electrical energy.
"PZT is 100 times more efficient than quartz, another piezoelectric material," said McAlpine. "You don't generate that much power from walking or breathing, so you want to harness it as efficiently as possible."
In a separate process, the team then embedded these ribbons into clear sheets of silicone rubber, creating what they call "piezo-rubber chips.” The Princeton team is the first to successfully combine silicone and nanoribbons of PZT.
In addition to generating electricity when it is flexed, the opposite is true: the material flexes when electrical current is applied to it. This opens the door to other kinds of applications, such as use for microsurgical devices, McAlpine said.
"The beauty of this is that it's scalable," said Yi Qi, a postdoctoral researcher who works with McAlpine. "As we get better at making these chips, we'll be able to make larger and larger sheets of them that will harvest more energy."
A paper on the new material, titled "Piezoelectric Ribbons Printed onto Rubber for Flexible Energy Conversion," was published online Jan. 26, in Nano Letters

Comments

Popular posts from this blog

Silent headset lets users quietly commune with computers

Advances in voice recognition technology have seen it become a more viable form of computer interface, but it's not necessarily a quieter one. To prevent the click-clacking of keyboards being replaced by noisy man-machine conversations, MIT researchers are developing a new system called AlterEgo that allows people to talk to computers without speaking and listen to them without using their ears. At first glance, the AlterEgo headpiece looks like the product of a design student who didn't pay attention in class. Instead of the familiar combination of an earpiece and microphone, the device is a cumbersome white plastic curve like the jawbone of some strange animal that hangs off the wearer's ear and arcs over to touch the chin. It might look strange, but it's based on some fairly sophisticated technology. Inside the Alterego are electrodes that scan the jaw and face from neuromuscular signals produced when the wearer thinks about verbalizing words without

Qualcomm showcases the Snapdragon S4 ahead of Mobile World Congress

We’ve already heard about Qualcomm’s latest processor, the Snapdragon S4 , which will be quad-core and utilize LTE. Qualcomm took the time to give us some details ahead of Mobile World Congress. The new SoC now supports up to three cameras (two in the back for 3D and one front-facing), 20-megapixels, and recording video at 1080p (30fps). We can also expect zero shutter lag, 3A processing (autofocus, auto exposure and auto white balance), and improved blink/smile detection, gaze estimation, range finding and image stabilization. Last but not least, it supports gesture detection/control, augmented reality , and computer vision (via Qualcomm’s FastCV). Hit the break for a couple of videos featuring image stabilization and gestures.

Say Hello To Darkness In WhatsApp With Dark Mode

WhatsApp has rolled one of the most requested feature, Dark mode for all users across the globe. It is available as a part of the latest update on Android and iOS devices. Dark mode is a new design feature in WhatsApp that offers a fresh look on familiar experience and designed to reduce eye strain in low light conditions. There are many people in the planet who find dark backgrounds easier to look at for long time period, Dark mode is for them. Dark mode consumes less power especially your device has an AMOLED display. Above all, Dark mode looks cool and offers you a refreshing change from the White color theme.  Enabling dark mode in WhatsApp is very easy. Here's the steps:  1. Open WhatsApp from the home screen. 2. Tap More Options. (Three vertical dots on the top right corner of the app) 3. Choose Settings. 4. Select Chats from the Settings menu. 5. Click On Theme. 6. In the Choose Theme dialog box, select Dark to turn on Dark mode. Choose Light to turn