Skip to main content

Single-atom transistor built with precise control




Researchers were able to make a single-atom transistor with a scanning tunneling microscope that includes the single red phosphorous atom and electrical leads for control gates and electrodes.

(Credit: University of New South Wales)


Researchers are getting down to the atomic level in the pursuit of smaller and more powerful computers.

The University of New South Wales in Australia today announced it has made a single-atom transistor using a repeatable method, a development that could lead to computing devices that use these tiny building blocks.

About two years ago, a team of researchers from the Helsinki University of Technology, the University of New South Wales, and the University of Melbourne in Australia announced the creation of a single-atom transistor designed around a single phosphorus atom in silicon.

Now a new paper published in the journal "Nature Nanotechnology" describes a technique for making this type of transistor with very precise control. That opens up the possibility that the method can be automated and single-atom transistors could be manufactured, according to the group at the University of New South Wales.

"The thing that's unique about the work that we've done is that we have, with atomic precision, positioned this single atom within our device," said Martin Fuechsle from the lab. That level of control is important in order to fabricate the other components, including control gates and electrodes, needed for a working transistor, the building block of microprocessors and computers.

The lab members used a scanning tunneling microscope to manipulate atoms at the surface of a silicon crystal. Then with a lithographic process, they laid phosphorous atoms onto the silicon substrate.

"Our group has proved that it is really possible to position one phosphorus atom in a silicon environment--exactly as we need it--with near-atomic precision, and at the same time register gates," Fuechsle said in a statement.

Work on alternatives to traditional microprocessor designs has been going on for years to maintain the pace of Moore's Law, which predicts that the number of transistors on a semiconductor doubles every 18 months. Intel last year announced it would start using three-dimensional transistors for its 22-nanometer process, a move designed to avoid the leakage of current that occurs at this very small scale. Other groups have pursued carbon nanotubes or graphene rather than silicon in the pursuit of miniaturization.

The University of New South Wales team hopes that its method of manipulating at the atomic scale can form the basis for quantum computers, machines that use the effects of quantum mechanics, specifically the spin of electrons around an atom, to represent digital information.

"This individual position (of a phosphorus atom in silicon) is really important...because it turns out that if you want to have precise control at this level, you need to position individual atoms with atomic precision with respect to control gates and electrodes," Fuechsle said.


Comments

Popular posts from this blog

Silent headset lets users quietly commune with computers

Advances in voice recognition technology have seen it become a more viable form of computer interface, but it's not necessarily a quieter one. To prevent the click-clacking of keyboards being replaced by noisy man-machine conversations, MIT researchers are developing a new system called AlterEgo that allows people to talk to computers without speaking and listen to them without using their ears. At first glance, the AlterEgo headpiece looks like the product of a design student who didn't pay attention in class. Instead of the familiar combination of an earpiece and microphone, the device is a cumbersome white plastic curve like the jawbone of some strange animal that hangs off the wearer's ear and arcs over to touch the chin. It might look strange, but it's based on some fairly sophisticated technology. Inside the Alterego are electrodes that scan the jaw and face from neuromuscular signals produced when the wearer thinks about verbalizing words without

Qualcomm showcases the Snapdragon S4 ahead of Mobile World Congress

We’ve already heard about Qualcomm’s latest processor, the Snapdragon S4 , which will be quad-core and utilize LTE. Qualcomm took the time to give us some details ahead of Mobile World Congress. The new SoC now supports up to three cameras (two in the back for 3D and one front-facing), 20-megapixels, and recording video at 1080p (30fps). We can also expect zero shutter lag, 3A processing (autofocus, auto exposure and auto white balance), and improved blink/smile detection, gaze estimation, range finding and image stabilization. Last but not least, it supports gesture detection/control, augmented reality , and computer vision (via Qualcomm’s FastCV). Hit the break for a couple of videos featuring image stabilization and gestures.

Say Hello To Darkness In WhatsApp With Dark Mode

WhatsApp has rolled one of the most requested feature, Dark mode for all users across the globe. It is available as a part of the latest update on Android and iOS devices. Dark mode is a new design feature in WhatsApp that offers a fresh look on familiar experience and designed to reduce eye strain in low light conditions. There are many people in the planet who find dark backgrounds easier to look at for long time period, Dark mode is for them. Dark mode consumes less power especially your device has an AMOLED display. Above all, Dark mode looks cool and offers you a refreshing change from the White color theme.  Enabling dark mode in WhatsApp is very easy. Here's the steps:  1. Open WhatsApp from the home screen. 2. Tap More Options. (Three vertical dots on the top right corner of the app) 3. Choose Settings. 4. Select Chats from the Settings menu. 5. Click On Theme. 6. In the Choose Theme dialog box, select Dark to turn on Dark mode. Choose Light to turn