Skip to main content

Quantum breakthrough: Scientists generate qubits within semiconductors


A significant step on the path to quantum computing has been taken by an international team of researchers applying a 22-year old theory. They have succeeded in creating quantum bits within a semiconductor for the very first time.
Classical bits can be assigned one of only two values which are typically used to reflect on or off, true or false, yes or no, and other binary states. In each of these cases, the first, positive state is typically represented by a 1, and the second a 0 (the word bit is itself a contraction of binary digit - binary numbers consisting of strings of 1s and 0s). In current electronics devices, the 1s and 0s are conveyed by voltage variations.
Like a classical bit, quantum bits (or qubits) take on values of 0 or 1, but unlike a classical bit, a qubit can assume both values simultaneously, and to varying degrees, through what is known as superposition. Superposition allows a qubit to be assigned the value of a complex variable, and this promises to one day significantly increase the computational power of computers - especially when tackling certain types of problems in fields including encryption and quantum research.
But qubits are fickle things, having a tendency to lose superposition under observation (recall Schrödinger and his unfortunate cat). Until this latest breakthrough, qubits had only been successfully created in large vacuum chambers. But by using a theory proposed 22 years ago by physicist Prof. Dr. Andreas Wieck of the Ruhr University Bochum (RUB), researchers have used a dual-channel system to create qubits in a semiconductor.
Electrons are passed through a semiconductor until they arrive at a fork. At the fork, each electron takes both paths simultaneously. When the two paths are merged, the two electron waves interfere with each other, and, some of the time, qubits with more than one state occur, caused by the overlap of the waves. At this stage, only a few percent of electrons emerge as qubits, but the RUB researchers hope to improve on the success rate by employing semiconductor crystals with greater electron densities - the current round of research used gallium arsenide.
The research, titled Electrical control of a solid-state flying qubit, was published inNature Nanotechnology last week.

Comments

Popular posts from this blog

10 URLs to Find Out What Google Knows About You

Google is much more than just a search giant. It is also home to many of your favorite products: Gmail, YouTube, and Chrome, just to name a few. Apart from that, it also offers many products to help you  keep track of your data . Most of these are  hidden deep  inside the My Account dashboard, which many users don’t really know of. These hidden tools  may reveal interesting details  about your usage of Google’s many services. We’ve compiled a list of important Google URLs of some  hidden tools  that carry information of what you did with Google, mostly from the searches that you have made on their many products, the voice searches and typed out Google searches that you have made. Are you ready to  find out what how Google knows about you ? 1.  Google Dashboard Google Dashboard offers  transparency and control over the personal data stored with your Google Account. You can  view  and  manage the data gener...

Wind Turbines

The Bahrain World Trade Center is the first skyscraper to have wind turbines integrated into the structure of the building.Three large wind turbines are suspended between two office towers. The towers are aerodynamically tapered to funnel wind and draw air into the turbines. This airfoil tapering allows the wind to enter the turbines at a perpendicular angle and increases air speed as much as 30 percent in each of the 95 ft wide turbine rotors. The turbines supply about 15 percent of the electricity used by the skyscraper - approximately the same amount of electricity used by 300 homes. Source: www.norwin.dk

Edible water balloons that could get rid of the need for plastic bottles

In case you didn’t know, bottled water is destroying the planet. We know that we need to be drinking plenty of water. It’s important. But the plastic bottles they’re sold in are terrible for the environment. One solution is using reusable bottles that you can fill from any nearby taps instead of buying a new bottle each time. Another solution is much more exciting. A group of engineers from Skipping Rocks Lab have developed a wonderful thing called The Ooho!. It’s a globe filled water that you can pop in your mouth whole. The outer shell is made of algae, so it’s edible and biodegradable. Meaning there’s no need for packaging or plastic – the globes of water are self-contained and ready to consume. Exciting, right? Plus they’re wobbly and they look cool, which is always a bonus. The team have now created a crowdfunding page to make their creation available to the public, with goals of selling The Ooho! at festival and marathons within the next 12 m...