Skip to main content

Flat polymer sheets bend themselves into 3D shapes - just add water



When the petal of a flower is being formed, its shape is achieved by cells in one area expanding more than cells in an adjacent area. This uneven expansion causes the material to buckle, creating the desired curves and creases. Scientists from the University of Massachusetts, Amherst have taken that same principle, and applied it to flat polymer gel sheets that fold themselves into three-dimensional shapes when exposed to water. Some day, such sheets could serve a number of useful purposes.
The researchers use a photolithography process, in which parts of each sheet are masked with a thin painted-on coating, followed by an exposure to ultraviolet light. The polymer that is masked from the UV light will uniformly expand like a sponge when exposed to water. In areas that aren't masked, however, the UV light causes the molecules within the polymer to become cross-linked. This means that the material in those areas will only experience limited expansion when water is added.
When areas with cross-linked molecules are flanked by areas of the protected polymer, buckling will occur as the one area expands more than the other. By strategically patterning the size and placement of the cross-linked areas, along with subjecting some of them to a second UV exposure, the scientists have been able to determine what 3D shapes the sheets would expand into when wetted.
So far, they've managed to create basic shapes such as spheres, saddles and cones. Down the road, however, the researchers believe that the technology could be used in fields such as biomedicine, where cultured cells could be designed to form themselves into blood vessels or specific organs. It could also find use in applications such as robotics, and tunable micro-optics.
It's reminiscent of research recently performed at North Carolina State University, in which black stripes were printed onto pre-stressed flat sheets of polymer. When subjected to infrared light, the striped areas absorbed more energy than the surrounding material. This caused the underlying polymer to contract, which in turn caused the sheets to fold themselves into 3D structures.
A paper on the University of Massachusetts research was recently published in the journal Science.

Comments

Popular posts from this blog

Solar car hits U.S. in round-the-world jaunt

Last October, the SolarWorld GT solar-powered car set out from Darwin, Australia on a drive around the world. It has since driven 3,001 kilometers (1,865 miles) across Australia, logged 1,947 km (1,210 miles) crossing New Zealand and been shipped across the Pacific Ocean. This Friday, it will embark on the U.S. leg of its journey, as it sets out across America from the University of California, Santa Barbara.   The SolarWorld GT is the result of a collaboration between solar panel manufacturer SolarWorld, and Bochum University of Applied Sciences in Germany. The four-wheeled, two-door, two-seat car gathers solar energy through photovoltaic panels built into its roof, with its solar generator offering a peak performance of 823 watts. Custom hub motors are located in both of the front wheels. The vehicle manages an average speed of 50 km/h (31 mph), with a claimed top speed of 100 km/h (62 mph). In order to demonstrate that solar powered cars needn't be a radical...

Biocomputer, Alternative To Quantum Computers

A team of international scientists from Canada, the U.K., Germany, the Netherlands and Sweden announced Friday that they had developed a model biological supercomputer capable of solving complex mathematical problems using far less energy than standard electronic supercomputers. The model “biocomputer,” which is roughly the size of a book, is powered by Adenosine triphosphate (ATP) — dubbed the “molecular unit of currency.” According to description of the device, published in the  Proceedings of the National Academy of Sciences , the biocomputer uses proteins present in all living cells to function. It uses a strategy similar to that of quantum computers, which use qubits — the quantum computing equivalents of bits — to perform “parallel computation,” wherein  computers are able to process information quickly and accurately by performing several calculations simultaneously, rather than sequentially. In the case of the biocomputer, the qubits are replaced with ...

Qualcomm showcases the Snapdragon S4 ahead of Mobile World Congress

We’ve already heard about Qualcomm’s latest processor, the Snapdragon S4 , which will be quad-core and utilize LTE. Qualcomm took the time to give us some details ahead of Mobile World Congress. The new SoC now supports up to three cameras (two in the back for 3D and one front-facing), 20-megapixels, and recording video at 1080p (30fps). We can also expect zero shutter lag, 3A processing (autofocus, auto exposure and auto white balance), and improved blink/smile detection, gaze estimation, range finding and image stabilization. Last but not least, it supports gesture detection/control, augmented reality , and computer vision (via Qualcomm’s FastCV). Hit the break for a couple of videos featuring image stabilization and gestures.