Skip to main content

New production process could cut solar cell prices by half



Boosting solar cell efficiency is seen as a key factor in making them more practical, but there is another way of looking at the matter ... if the price of those cells were lowered, we could generate more power simply by using more of them. That’s where Mississippi-based Twin Creeks Technologies comes into the picture. The company has developed a method of making crystalline silicon wafers which it says could reduce the cost of solar cell production by half.
Ordinarily, when crystalline silicon wafers are being made for use in solar cells, a chunk of silicon is cut into wafers that are each 200 micrometers thick. According to Twin Creeks, however, only the very surface of that wafer is “active” – the rest is wasted. Much less waste would occur if the wafers could be made thinner, but using traditional production techniques, such wafers would be too fragile to stand up to the rigors of photovoltaic panel production.
In Twin Creeks’ proprietary Hyperion process, three-millimeter-thick disks of crystalline silicon are placed in a vacuum chamber, where they’re bombarded with a beam of hydrogen ions. The ion accelerator that’s used is reportedly ten times more powerful than anything else commercially available.
Through control of the voltage of its beam, a layer of ions is precisely deposited on each disk. Those ions proceed to penetrate the silicon, so they’re located just below its surface. The disks are then robotically transferred to a furnace and heated. This causes the ions to expand into microscopic bubbles of hydrogen gas, which in turn causes a 20-micrometer-thick layer of silicon to peel off the surface of each disk. A supportive metal backing is then applied to that layer, and it’s ready for use.
The disks can be reused up to 14 times, each time “exfoliating” another layer of silicon.
The resulting ultra-thin wafers are claimed to be at least as efficient as their thicker traditional counterparts, yet require 90 percent less silicon to produce. The system can be added to existing production lines, although because less tools are required, production costs should also be significantly reduced. Additionally, the technology can be used with other single-crystal materials such as gallium nitride and germanium.
Presently, the technology can be seen in action at Twin Creeks’ commercial demonstration plant in Senatobia, Mississippi. The company intends to license the Hyperion system to existing solar cell manufacturers.

Comments

Popular posts from this blog

Solar car hits U.S. in round-the-world jaunt

Last October, the SolarWorld GT solar-powered car set out from Darwin, Australia on a drive around the world. It has since driven 3,001 kilometers (1,865 miles) across Australia, logged 1,947 km (1,210 miles) crossing New Zealand and been shipped across the Pacific Ocean. This Friday, it will embark on the U.S. leg of its journey, as it sets out across America from the University of California, Santa Barbara.   The SolarWorld GT is the result of a collaboration between solar panel manufacturer SolarWorld, and Bochum University of Applied Sciences in Germany. The four-wheeled, two-door, two-seat car gathers solar energy through photovoltaic panels built into its roof, with its solar generator offering a peak performance of 823 watts. Custom hub motors are located in both of the front wheels. The vehicle manages an average speed of 50 km/h (31 mph), with a claimed top speed of 100 km/h (62 mph). In order to demonstrate that solar powered cars needn't be a radical...

Biocomputer, Alternative To Quantum Computers

A team of international scientists from Canada, the U.K., Germany, the Netherlands and Sweden announced Friday that they had developed a model biological supercomputer capable of solving complex mathematical problems using far less energy than standard electronic supercomputers. The model “biocomputer,” which is roughly the size of a book, is powered by Adenosine triphosphate (ATP) — dubbed the “molecular unit of currency.” According to description of the device, published in the  Proceedings of the National Academy of Sciences , the biocomputer uses proteins present in all living cells to function. It uses a strategy similar to that of quantum computers, which use qubits — the quantum computing equivalents of bits — to perform “parallel computation,” wherein  computers are able to process information quickly and accurately by performing several calculations simultaneously, rather than sequentially. In the case of the biocomputer, the qubits are replaced with ...

Qualcomm showcases the Snapdragon S4 ahead of Mobile World Congress

We’ve already heard about Qualcomm’s latest processor, the Snapdragon S4 , which will be quad-core and utilize LTE. Qualcomm took the time to give us some details ahead of Mobile World Congress. The new SoC now supports up to three cameras (two in the back for 3D and one front-facing), 20-megapixels, and recording video at 1080p (30fps). We can also expect zero shutter lag, 3A processing (autofocus, auto exposure and auto white balance), and improved blink/smile detection, gaze estimation, range finding and image stabilization. Last but not least, it supports gesture detection/control, augmented reality , and computer vision (via Qualcomm’s FastCV). Hit the break for a couple of videos featuring image stabilization and gestures.