Skip to main content

Hydrogel could grow new heart tissue, without the need for surgery



Universities and scientific organizations all over the world are currently looking into ways of growing functioning heart cells on the heart, to replace the tissue that dies when a heart attack occurs. As things currently stand, the body replaces that tissue with non-beating scar tissue, leaving the heart permanently weakened. Most of the experimental techniques for generating new tissue involve introducing some sort of micro-scaffolding to the affected area, providing a framework for new cells to grow on. That scaffolding has consisted of materials such as carbon nanofibers and gold nanowires, which would have to be surgically applied to the heart, sort of like a Band-Aid. Now, however, researchers from the University of California, San Diego are reporting success in animal trials, using an injectable hydrogel.
The team is being led by Karen Christman, a professor in UCSD's Department of Bioengineering.
They started by obtaining cardiac connective tissue, then used a cleansing process to remove its muscle cells, freeze-dried it, milled it into a powder, and used an enzyme to liquefy it. When injected into the hearts of pigs with cardiac damage, the liquid turned into a porous, semi-solid gel upon reaching body temperature. That gel subsequently provided a scaffold for new tissue growth, and the pigs' condition improved.
Besides acting as a scaffold, it is suspected that the gel might also provide biochemical signals, which prevent the surrounding heart tissue from deteriorating further.
Christman believes that the liquid could be injected using a catheter, so surgery and general anesthesia would not be required. While other scientists have developed heart-repairing hydrogels before, she notes that those substances would not work with catheters, as they would gel too quickly.
When injected into rats, the gel wasn't rejected and didn't cause arrhythmic heart beating - an indication that it could also be biocompatible with humans. A spin-off company, Ventrix, is planning clinical trials sometime next year.


Comments

Popular posts from this blog

Nine government sites hit by cyber attacks: NIC

The National Informatics Center (NIC) has revealed that as many as nine government websites were defaced by recent cyber attacks. The center further said that the servers, which hosts these government sites, suffer a number of hacking attempts on a daily basis. The websites www.kumbh2010haridwar.gov.in, www.ueppcb.uk.gov.in, www.gov.ua.nic.in/ujn, www.cdodoon.gov.in, www.arunachal.nic.in,www.bee-india.nic.in, www.civilsupplieskerala.gov.in, www.mpcb.gov.in and www.informatics.nic.in were  defaced , prompting authorities to  ramp up  the cyber security safeguards. In an RTI reply, the NIC, which reports to the Ministry of Communications and Information Technology, said that it was impossible for the body to accurately quantify these attacks but they are usually blocked by security controls put in place. The Ministry was asked to provide details of hacking attempts made on the governments websites in the last ten years (2001-11) along with url names of the portal...

Google and Stanford early adopters of Honda Fit EV

Honda's first all-electric vehicle is hitting the streets a little early. The  Honda Fit EV  debuted at the Los Angeles Auto Show in November 2011, and it's expected to be     available for lease this summer. However,  Honda announced  that Google and Stanford University got a special early delivery of the tiny EV this week.The Honda Fit EV is equipped with a 20kWh lithium ion battery, and has an EPA estimated driving range of 76 miles. Google added the EV to its  car -sharing service for employees, dubbed the G-Fleet, in    Mountain View, Calif. The search giant maintains several electric and plug-in vehicles that it uses for research and to cart Googlers around town and between buildings on campus. Stanford University also is an early adopter of the Fit EV, but will be using it primarily for research. The university's automotive research department will study the difference in psychological and physical reactions of using battery...

Solar car hits U.S. in round-the-world jaunt

Last October, the SolarWorld GT solar-powered car set out from Darwin, Australia on a drive around the world. It has since driven 3,001 kilometers (1,865 miles) across Australia, logged 1,947 km (1,210 miles) crossing New Zealand and been shipped across the Pacific Ocean. This Friday, it will embark on the U.S. leg of its journey, as it sets out across America from the University of California, Santa Barbara.   The SolarWorld GT is the result of a collaboration between solar panel manufacturer SolarWorld, and Bochum University of Applied Sciences in Germany. The four-wheeled, two-door, two-seat car gathers solar energy through photovoltaic panels built into its roof, with its solar generator offering a peak performance of 823 watts. Custom hub motors are located in both of the front wheels. The vehicle manages an average speed of 50 km/h (31 mph), with a claimed top speed of 100 km/h (62 mph). In order to demonstrate that solar powered cars needn't be a radical...