Skip to main content

Hydrogel could grow new heart tissue, without the need for surgery



Universities and scientific organizations all over the world are currently looking into ways of growing functioning heart cells on the heart, to replace the tissue that dies when a heart attack occurs. As things currently stand, the body replaces that tissue with non-beating scar tissue, leaving the heart permanently weakened. Most of the experimental techniques for generating new tissue involve introducing some sort of micro-scaffolding to the affected area, providing a framework for new cells to grow on. That scaffolding has consisted of materials such as carbon nanofibers and gold nanowires, which would have to be surgically applied to the heart, sort of like a Band-Aid. Now, however, researchers from the University of California, San Diego are reporting success in animal trials, using an injectable hydrogel.
The team is being led by Karen Christman, a professor in UCSD's Department of Bioengineering.
They started by obtaining cardiac connective tissue, then used a cleansing process to remove its muscle cells, freeze-dried it, milled it into a powder, and used an enzyme to liquefy it. When injected into the hearts of pigs with cardiac damage, the liquid turned into a porous, semi-solid gel upon reaching body temperature. That gel subsequently provided a scaffold for new tissue growth, and the pigs' condition improved.
Besides acting as a scaffold, it is suspected that the gel might also provide biochemical signals, which prevent the surrounding heart tissue from deteriorating further.
Christman believes that the liquid could be injected using a catheter, so surgery and general anesthesia would not be required. While other scientists have developed heart-repairing hydrogels before, she notes that those substances would not work with catheters, as they would gel too quickly.
When injected into rats, the gel wasn't rejected and didn't cause arrhythmic heart beating - an indication that it could also be biocompatible with humans. A spin-off company, Ventrix, is planning clinical trials sometime next year.


Comments

Popular posts from this blog

Solar car hits U.S. in round-the-world jaunt

Last October, the SolarWorld GT solar-powered car set out from Darwin, Australia on a drive around the world. It has since driven 3,001 kilometers (1,865 miles) across Australia, logged 1,947 km (1,210 miles) crossing New Zealand and been shipped across the Pacific Ocean. This Friday, it will embark on the U.S. leg of its journey, as it sets out across America from the University of California, Santa Barbara.   The SolarWorld GT is the result of a collaboration between solar panel manufacturer SolarWorld, and Bochum University of Applied Sciences in Germany. The four-wheeled, two-door, two-seat car gathers solar energy through photovoltaic panels built into its roof, with its solar generator offering a peak performance of 823 watts. Custom hub motors are located in both of the front wheels. The vehicle manages an average speed of 50 km/h (31 mph), with a claimed top speed of 100 km/h (62 mph). In order to demonstrate that solar powered cars needn't be a radical...

Biocomputer, Alternative To Quantum Computers

A team of international scientists from Canada, the U.K., Germany, the Netherlands and Sweden announced Friday that they had developed a model biological supercomputer capable of solving complex mathematical problems using far less energy than standard electronic supercomputers. The model “biocomputer,” which is roughly the size of a book, is powered by Adenosine triphosphate (ATP) — dubbed the “molecular unit of currency.” According to description of the device, published in the  Proceedings of the National Academy of Sciences , the biocomputer uses proteins present in all living cells to function. It uses a strategy similar to that of quantum computers, which use qubits — the quantum computing equivalents of bits — to perform “parallel computation,” wherein  computers are able to process information quickly and accurately by performing several calculations simultaneously, rather than sequentially. In the case of the biocomputer, the qubits are replaced with ...

Qualcomm showcases the Snapdragon S4 ahead of Mobile World Congress

We’ve already heard about Qualcomm’s latest processor, the Snapdragon S4 , which will be quad-core and utilize LTE. Qualcomm took the time to give us some details ahead of Mobile World Congress. The new SoC now supports up to three cameras (two in the back for 3D and one front-facing), 20-megapixels, and recording video at 1080p (30fps). We can also expect zero shutter lag, 3A processing (autofocus, auto exposure and auto white balance), and improved blink/smile detection, gaze estimation, range finding and image stabilization. Last but not least, it supports gesture detection/control, augmented reality , and computer vision (via Qualcomm’s FastCV). Hit the break for a couple of videos featuring image stabilization and gestures.