Skip to main content

Super-Elastic Polymer Could For Your Artificial Skin and Muscle

Stanford University researchers just synthesized a material which, when tested, produced some pretty remarkable results—it’s super stretchy, self-healing, and responsive to an electrical field. These properties make it a perfect material for artificial skin and muscle.




The study, published in Nature Chemistry, was conducted by professor Zhenan Bao’s work group, which has been on a quest to develop artificial skin for quite some time now, and has previously had some success.
According to the press release, when the researchers tested the newly synthesized elastomer, the results surprised them…its “stretchiness” had gone beyond the limits of the machine used to measure its elasticity and breaking point!
The limit is only about 45 inches, so the researchers had to stretch the material on their own, and the 2.54 cm (1 in) sample they used had expanded to over 100 times its length.




Beyond its shocking elasticity, it’s also self-healing at room temperature, requiring neither solvents nor heat treatments. Damaged material could still self-heal at temperatures as low as -20 °C or (-4 °F), and even when aged for days.
Moreover, when the researchers exposed the material to an electric field, it twitched the same way a muscle would.

IT’S ALL THANKS TO THE SCIENCE BEHIND IT

The material is a combination of linear chains of molecules linked together by organic molecules called ligands. This type of bonding process is called crosslinking, which gives the material its remarkable elasticity.
The researchers “doped” the material with metal ions, which had a strong affinity to the ligands. Torn samples, when put back together, self-heal through the metal ions by rebuilding the broken chain of molecules. These ions are also responsible for the material’s responsiveness to an electrical field.




The results of the new polymer adds to Bao’s efforts to create artificial skin and muscle that could be applied to prosthetic limbs to return the lost sense of touch. Even robotics could benefit from the technology, which could impart a delicate tactile and sensory capacity to machines not known for such.

Comments

Popular posts from this blog

Solar car hits U.S. in round-the-world jaunt

Last October, the SolarWorld GT solar-powered car set out from Darwin, Australia on a drive around the world. It has since driven 3,001 kilometers (1,865 miles) across Australia, logged 1,947 km (1,210 miles) crossing New Zealand and been shipped across the Pacific Ocean. This Friday, it will embark on the U.S. leg of its journey, as it sets out across America from the University of California, Santa Barbara.   The SolarWorld GT is the result of a collaboration between solar panel manufacturer SolarWorld, and Bochum University of Applied Sciences in Germany. The four-wheeled, two-door, two-seat car gathers solar energy through photovoltaic panels built into its roof, with its solar generator offering a peak performance of 823 watts. Custom hub motors are located in both of the front wheels. The vehicle manages an average speed of 50 km/h (31 mph), with a claimed top speed of 100 km/h (62 mph). In order to demonstrate that solar powered cars needn't be a radical...

Biocomputer, Alternative To Quantum Computers

A team of international scientists from Canada, the U.K., Germany, the Netherlands and Sweden announced Friday that they had developed a model biological supercomputer capable of solving complex mathematical problems using far less energy than standard electronic supercomputers. The model “biocomputer,” which is roughly the size of a book, is powered by Adenosine triphosphate (ATP) — dubbed the “molecular unit of currency.” According to description of the device, published in the  Proceedings of the National Academy of Sciences , the biocomputer uses proteins present in all living cells to function. It uses a strategy similar to that of quantum computers, which use qubits — the quantum computing equivalents of bits — to perform “parallel computation,” wherein  computers are able to process information quickly and accurately by performing several calculations simultaneously, rather than sequentially. In the case of the biocomputer, the qubits are replaced with ...

Qualcomm showcases the Snapdragon S4 ahead of Mobile World Congress

We’ve already heard about Qualcomm’s latest processor, the Snapdragon S4 , which will be quad-core and utilize LTE. Qualcomm took the time to give us some details ahead of Mobile World Congress. The new SoC now supports up to three cameras (two in the back for 3D and one front-facing), 20-megapixels, and recording video at 1080p (30fps). We can also expect zero shutter lag, 3A processing (autofocus, auto exposure and auto white balance), and improved blink/smile detection, gaze estimation, range finding and image stabilization. Last but not least, it supports gesture detection/control, augmented reality , and computer vision (via Qualcomm’s FastCV). Hit the break for a couple of videos featuring image stabilization and gestures.