Skip to main content

Solar cells as light as a soap bubble

Ultrathin, flexible photovoltaic cells could find many new uses.

Imagine solar cells so thin, flexible, and lightweight that they could be placed on almost any material or surface, including your hat, shirt, or smartphone, or even on a sheet of paper or a helium balloon.

Researchers at MIT have now demonstrated just such a technology: the thinnest, lightest solar cells ever produced. Though it may take years to develop into a commercial product, the laboratory proof-of-concept shows a new approach to making solar cells that could help power the next generation of portable electronic devices.
The new process is described in a paper by MIT professor Vladimir Bulovic, research scientist Annie Wang, and doctoral student Joel Jean, in the journalOrganic Electronics.
Bulovic, MIT's associate dean for innovation and the Fariborz Maseeh (1990) Professor of Emerging Technology, says the key to the new approach is to make the solar cell, the substrate that supports it, and a protective overcoating to shield it from the environment, all in one process. The substrate is made in place and never needs to be handled, cleaned, or removed from the vacuum during fabrication, thus minimizing exposure to dust or other contaminants that could degrade the cell's performance.




"The innovative step is the realization that you can grow the substrate at the same time as you grow the device," Bulovic says.
In this initial proof-of-concept experiment, the team used a common flexible polymer called perylene as both the substrate and the overcoating, and an organic material called DBP as the primary light-absorbing layer. Parylene is a commercially available plastic coating used widely to protect implanted biomedical devices and printed circuit boards from environmental damage. The entire process takes place in a vacuum chamber at room temperature and without the use of any solvents, unlike conventional solar-cell manufacturing, which requires high temperatures and harsh chemicals. In this case, both the substrate and the solar cell are "grown" using established vapor deposition techniques.
One process, many materials




The team emphasizes that these particular choices of materials were just examples and that it is the in-line substrate manufacturing process that is the key innovation. Different materials could be used for the substrate and encapsulation layers, and different types of thin-film solar cell materials, including quantum dots or perovskites, could be substituted for the organic layers used in initial tests.
But already, the team has achieved the thinnest and lightest complete solar cells ever made, they say. To demonstrate just how thin and lightweight the cells are, the researchers draped a working cell on top of a soap bubble, without popping the bubble. The researchers acknowledge that this cell may be too thin to be practical -- "If you breathe too hard, you might blow it away," says Jean -- but perylene films of thicknesses of up to 80 microns can be deposited easily using commercial equipment, without losing the other benefits of in-line substrate formation.
A flexible perylene film, similar to kitchen cling-wrap but only one-tenth as thick, is first deposited on a sturdier carrier material -- in this case, glass. Figuring out how to cleanly separate the thin material from the glass was a key challenge, explains Wang, who has spent many years working with perylene.
The researchers lift the entire perylene/solar cell/perylene stack off the carrier after the fabrication process is complete, using a frame made of flexible film. The final ultra-thin, flexible solar cells, including substrate and overcoating, are just one-fiftieth of the thickness of a human hair and one-thousandth of the thickness of equivalent cells on glass substrates -- about two micrometers thick -- yet they convert sunlight into electricity just as efficiently as their glass-based counterparts.
No miracles needed




"We put our carrier in a vacuum system, then we deposit everything else on top of it, and then peel the whole thing off," explains Wang. Bulovic says that like most new inventions, it all sounds very simple -- once it's been done. But actually developing the techniques to make the process work required years of effort.
While they used a glass carrier for their solar cells, Jean says "it could be something else. You could use almost any material," since the processing takes place under such benign conditions. The substrate and solar cell could be deposited directly on fabric or paper, for example.
While the solar cell in this demonstration device is not especially efficient, because of its low weight, its power-to-weight ratio is among the highest ever achieved. That's important for applications where weight is important, such as on spacecraft or on high-altitude helium balloons used for research. Whereas a typical silicon-based solar module, whose weight is dominated by a glass cover, may produce about 15 watts of power per kilogram of weight, the new cells have already demonstrated an output of 6 watts per gram -- about 400 times higher.
"It could be so light that you don't even know it's there, on your shirt or on your notebook," Bulovic says. "These cells could simply be an add-on to existing structures."
Still, this is early, laboratory-scale work, and developing it into a manufacturable product will take time, the team says. Yet while commercial success in the short term may be uncertain, this work could open up new applications for solar power in the long term. "We have a proof-of-concept that works," Bulovic says. The next question is, "How many miracles does it take to make it scalable? We think it's a lot of hard work ahead, but likely no miracles needed."
The work was supported by Eni S.p.A. via the Eni-MIT Solar Frontiers Center, and by the National Science Foundation.
Story Source:
The above post is reprinted from materials provided by Massachusetts Institute of Technology. The original item was written by David L. Chandler. Note: Materials may be edited for content and length.

Comments

Popular posts from this blog

Silent headset lets users quietly commune with computers

Advances in voice recognition technology have seen it become a more viable form of computer interface, but it's not necessarily a quieter one. To prevent the click-clacking of keyboards being replaced by noisy man-machine conversations, MIT researchers are developing a new system called AlterEgo that allows people to talk to computers without speaking and listen to them without using their ears. At first glance, the AlterEgo headpiece looks like the product of a design student who didn't pay attention in class. Instead of the familiar combination of an earpiece and microphone, the device is a cumbersome white plastic curve like the jawbone of some strange animal that hangs off the wearer's ear and arcs over to touch the chin. It might look strange, but it's based on some fairly sophisticated technology. Inside the Alterego are electrodes that scan the jaw and face from neuromuscular signals produced when the wearer thinks about verbalizing words without

Qualcomm showcases the Snapdragon S4 ahead of Mobile World Congress

We’ve already heard about Qualcomm’s latest processor, the Snapdragon S4 , which will be quad-core and utilize LTE. Qualcomm took the time to give us some details ahead of Mobile World Congress. The new SoC now supports up to three cameras (two in the back for 3D and one front-facing), 20-megapixels, and recording video at 1080p (30fps). We can also expect zero shutter lag, 3A processing (autofocus, auto exposure and auto white balance), and improved blink/smile detection, gaze estimation, range finding and image stabilization. Last but not least, it supports gesture detection/control, augmented reality , and computer vision (via Qualcomm’s FastCV). Hit the break for a couple of videos featuring image stabilization and gestures.

Say Hello To Darkness In WhatsApp With Dark Mode

WhatsApp has rolled one of the most requested feature, Dark mode for all users across the globe. It is available as a part of the latest update on Android and iOS devices. Dark mode is a new design feature in WhatsApp that offers a fresh look on familiar experience and designed to reduce eye strain in low light conditions. There are many people in the planet who find dark backgrounds easier to look at for long time period, Dark mode is for them. Dark mode consumes less power especially your device has an AMOLED display. Above all, Dark mode looks cool and offers you a refreshing change from the White color theme.  Enabling dark mode in WhatsApp is very easy. Here's the steps:  1. Open WhatsApp from the home screen. 2. Tap More Options. (Three vertical dots on the top right corner of the app) 3. Choose Settings. 4. Select Chats from the Settings menu. 5. Click On Theme. 6. In the Choose Theme dialog box, select Dark to turn on Dark mode. Choose Light to turn