Skip to main content

Scientists Build A First-Ever Artificial Kidney: Part Nano-Tech, Part Living Cells


BUILDING AN ELECTRONIC KIDNEY
Scientists at Vanderbilt University have developed a first-ever implantable artificial kidney. The artificial kidney contains a microchip filter and living kidney cells that can function using the patient’s heart, and this bio-synthetic kidney acts like the real organ, removing salt, water and waste products to keep patients with kidney failure from relying on dialysis.




The key to this new development is a breakthrough in the microchip itself, which uses silicon nanotechnology. “[Silicon nanotechnology] uses the same processes that were developed by the microelectronics industry for computers,” said Dr. William H. Fissell IV, who led the team that developed the device.
The microchips are affordable, precise, and function as an ideal filter.
Each artificial kidney will contain 15 microchips layered on top of each other. These chips will work as filters and also act a support system for the living cells needed. These living cells are kidney cells grown in a laboratory dish and nurtured to become a bioreactor of living cells. This membrane of living cells allows the device to distinguish between innocuous chemicals and harmful ones.
“Then they can reabsorb the nutrients your body needs and discard the wastes your body desperately wants to get rid of,” said Fissell.




The artificial kidney does not require any external power source and functions solely with the patient’s own blood flow; however, the challenge for the researchers is how to get blood to flow through a blood vessel and move through the device without any damage or clotting.
SOLVING A DONOR PROBLEM





To resolve this problem of blood clotting, Fissell and his team collaborated with Amanda Buck, a biomedical engineer, to figure out the potential areas in the device which could lead to blood clotting. With the help of fluid dynamics and computer models, Buck was able to streamline and refine the shape of the channels so that blood could flow smoothly through the device. 3D printing also allowed for immediate feedback on the resulting prototype and analysis of its performance.
Considering the extent of shortage in kidney donors, the device would alleviate the demand for organ transplants for kidney failure patients. This shortage is not without its victims. The National Kidney Foundation has estimated that in US alone over 460,000 have last-stage renal disease and that about 13 kidney patients die every day waiting for a kidney.
The U.S. Organ Procurement and Transplantation Network said that there are over 100,000 American transplant patients waiting for a new kidney with only less than a fifth receiving transplants last year. With more research, the device may give those on the waiting list a new hope.
Clinical studies are scheduled to begin near the end of 2017.





Comments

Popular posts from this blog

Silent headset lets users quietly commune with computers

Advances in voice recognition technology have seen it become a more viable form of computer interface, but it's not necessarily a quieter one. To prevent the click-clacking of keyboards being replaced by noisy man-machine conversations, MIT researchers are developing a new system called AlterEgo that allows people to talk to computers without speaking and listen to them without using their ears. At first glance, the AlterEgo headpiece looks like the product of a design student who didn't pay attention in class. Instead of the familiar combination of an earpiece and microphone, the device is a cumbersome white plastic curve like the jawbone of some strange animal that hangs off the wearer's ear and arcs over to touch the chin. It might look strange, but it's based on some fairly sophisticated technology. Inside the Alterego are electrodes that scan the jaw and face from neuromuscular signals produced when the wearer thinks about verbalizing words without...

Water purification: Running fuel cells on bacteria to purify water

Researchers in Norway have succeeded in getting bacteria to power a fuel cell. The "fuel" used is wastewater, and the products of the process are purified water droplets and electricity. This is an environmentally-friendly process for the purification of water derived from industrial processes and suchlike. It also generates small amounts of electricity -- in practice enough to drive a small fan, a sensor or a light-emitting diode. In the future, the researchers hope to scale up this energy generation to enable the same energy to be used to power the water purification process , which commonly consists of many stages, often involving mechanical and energy-demanding decontamination steps at its outset. Nature's own generator The biological fuel cell is powered by entirely natural processes -- with the help of living microorganisms. "In simple terms, this type of fuel cell works because the bacteria consume the waste materials found in the water," explains SINTEF...

Harry Potter and the Cursed Child

Small Intro About Harry Potter and the Cursed Child Based on an original new story by J.K. Rowling, Jack Thorne and John Tiffany, Harry Potter and the Cursed Child is a new play by Jack Thorne. It is the eighth story in the Harry Potter series and the first official Harry Potter story to be presented on stage. It was always difficult being Harry Potter and it isn’t much easier now that he is an overworked employee of the Ministry of Magic, a husband and father of three school-age children. While Harry grapples with the past that refuses to stay where it belongs, his youngest son Albus must struggle with the weight of a family legacy he never wanted. As past and present fuse ominously, both father and son learn the uncomfortable truth: sometimes, darkness comes from unexpected places. Harry Potter and the Cursed Child is one play presented in two Parts, which are intended to be seen in order on the same day (matinee and evening) or on two consecutive evenings. ...