Skip to main content

Scientists Build A First-Ever Artificial Kidney: Part Nano-Tech, Part Living Cells


BUILDING AN ELECTRONIC KIDNEY
Scientists at Vanderbilt University have developed a first-ever implantable artificial kidney. The artificial kidney contains a microchip filter and living kidney cells that can function using the patient’s heart, and this bio-synthetic kidney acts like the real organ, removing salt, water and waste products to keep patients with kidney failure from relying on dialysis.




The key to this new development is a breakthrough in the microchip itself, which uses silicon nanotechnology. “[Silicon nanotechnology] uses the same processes that were developed by the microelectronics industry for computers,” said Dr. William H. Fissell IV, who led the team that developed the device.
The microchips are affordable, precise, and function as an ideal filter.
Each artificial kidney will contain 15 microchips layered on top of each other. These chips will work as filters and also act a support system for the living cells needed. These living cells are kidney cells grown in a laboratory dish and nurtured to become a bioreactor of living cells. This membrane of living cells allows the device to distinguish between innocuous chemicals and harmful ones.
“Then they can reabsorb the nutrients your body needs and discard the wastes your body desperately wants to get rid of,” said Fissell.




The artificial kidney does not require any external power source and functions solely with the patient’s own blood flow; however, the challenge for the researchers is how to get blood to flow through a blood vessel and move through the device without any damage or clotting.
SOLVING A DONOR PROBLEM





To resolve this problem of blood clotting, Fissell and his team collaborated with Amanda Buck, a biomedical engineer, to figure out the potential areas in the device which could lead to blood clotting. With the help of fluid dynamics and computer models, Buck was able to streamline and refine the shape of the channels so that blood could flow smoothly through the device. 3D printing also allowed for immediate feedback on the resulting prototype and analysis of its performance.
Considering the extent of shortage in kidney donors, the device would alleviate the demand for organ transplants for kidney failure patients. This shortage is not without its victims. The National Kidney Foundation has estimated that in US alone over 460,000 have last-stage renal disease and that about 13 kidney patients die every day waiting for a kidney.
The U.S. Organ Procurement and Transplantation Network said that there are over 100,000 American transplant patients waiting for a new kidney with only less than a fifth receiving transplants last year. With more research, the device may give those on the waiting list a new hope.
Clinical studies are scheduled to begin near the end of 2017.





Comments

Popular posts from this blog

Solar car hits U.S. in round-the-world jaunt

Last October, the SolarWorld GT solar-powered car set out from Darwin, Australia on a drive around the world. It has since driven 3,001 kilometers (1,865 miles) across Australia, logged 1,947 km (1,210 miles) crossing New Zealand and been shipped across the Pacific Ocean. This Friday, it will embark on the U.S. leg of its journey, as it sets out across America from the University of California, Santa Barbara.   The SolarWorld GT is the result of a collaboration between solar panel manufacturer SolarWorld, and Bochum University of Applied Sciences in Germany. The four-wheeled, two-door, two-seat car gathers solar energy through photovoltaic panels built into its roof, with its solar generator offering a peak performance of 823 watts. Custom hub motors are located in both of the front wheels. The vehicle manages an average speed of 50 km/h (31 mph), with a claimed top speed of 100 km/h (62 mph). In order to demonstrate that solar powered cars needn't be a radical...

Biocomputer, Alternative To Quantum Computers

A team of international scientists from Canada, the U.K., Germany, the Netherlands and Sweden announced Friday that they had developed a model biological supercomputer capable of solving complex mathematical problems using far less energy than standard electronic supercomputers. The model “biocomputer,” which is roughly the size of a book, is powered by Adenosine triphosphate (ATP) — dubbed the “molecular unit of currency.” According to description of the device, published in the  Proceedings of the National Academy of Sciences , the biocomputer uses proteins present in all living cells to function. It uses a strategy similar to that of quantum computers, which use qubits — the quantum computing equivalents of bits — to perform “parallel computation,” wherein  computers are able to process information quickly and accurately by performing several calculations simultaneously, rather than sequentially. In the case of the biocomputer, the qubits are replaced with ...

Qualcomm showcases the Snapdragon S4 ahead of Mobile World Congress

We’ve already heard about Qualcomm’s latest processor, the Snapdragon S4 , which will be quad-core and utilize LTE. Qualcomm took the time to give us some details ahead of Mobile World Congress. The new SoC now supports up to three cameras (two in the back for 3D and one front-facing), 20-megapixels, and recording video at 1080p (30fps). We can also expect zero shutter lag, 3A processing (autofocus, auto exposure and auto white balance), and improved blink/smile detection, gaze estimation, range finding and image stabilization. Last but not least, it supports gesture detection/control, augmented reality , and computer vision (via Qualcomm’s FastCV). Hit the break for a couple of videos featuring image stabilization and gestures.