Skip to main content

Scientists Build A First-Ever Artificial Kidney: Part Nano-Tech, Part Living Cells


BUILDING AN ELECTRONIC KIDNEY
Scientists at Vanderbilt University have developed a first-ever implantable artificial kidney. The artificial kidney contains a microchip filter and living kidney cells that can function using the patient’s heart, and this bio-synthetic kidney acts like the real organ, removing salt, water and waste products to keep patients with kidney failure from relying on dialysis.




The key to this new development is a breakthrough in the microchip itself, which uses silicon nanotechnology. “[Silicon nanotechnology] uses the same processes that were developed by the microelectronics industry for computers,” said Dr. William H. Fissell IV, who led the team that developed the device.
The microchips are affordable, precise, and function as an ideal filter.
Each artificial kidney will contain 15 microchips layered on top of each other. These chips will work as filters and also act a support system for the living cells needed. These living cells are kidney cells grown in a laboratory dish and nurtured to become a bioreactor of living cells. This membrane of living cells allows the device to distinguish between innocuous chemicals and harmful ones.
“Then they can reabsorb the nutrients your body needs and discard the wastes your body desperately wants to get rid of,” said Fissell.




The artificial kidney does not require any external power source and functions solely with the patient’s own blood flow; however, the challenge for the researchers is how to get blood to flow through a blood vessel and move through the device without any damage or clotting.
SOLVING A DONOR PROBLEM





To resolve this problem of blood clotting, Fissell and his team collaborated with Amanda Buck, a biomedical engineer, to figure out the potential areas in the device which could lead to blood clotting. With the help of fluid dynamics and computer models, Buck was able to streamline and refine the shape of the channels so that blood could flow smoothly through the device. 3D printing also allowed for immediate feedback on the resulting prototype and analysis of its performance.
Considering the extent of shortage in kidney donors, the device would alleviate the demand for organ transplants for kidney failure patients. This shortage is not without its victims. The National Kidney Foundation has estimated that in US alone over 460,000 have last-stage renal disease and that about 13 kidney patients die every day waiting for a kidney.
The U.S. Organ Procurement and Transplantation Network said that there are over 100,000 American transplant patients waiting for a new kidney with only less than a fifth receiving transplants last year. With more research, the device may give those on the waiting list a new hope.
Clinical studies are scheduled to begin near the end of 2017.





Comments

Popular posts from this blog

10 URLs to Find Out What Google Knows About You

Google is much more than just a search giant. It is also home to many of your favorite products: Gmail, YouTube, and Chrome, just to name a few. Apart from that, it also offers many products to help you  keep track of your data . Most of these are  hidden deep  inside the My Account dashboard, which many users don’t really know of. These hidden tools  may reveal interesting details  about your usage of Google’s many services. We’ve compiled a list of important Google URLs of some  hidden tools  that carry information of what you did with Google, mostly from the searches that you have made on their many products, the voice searches and typed out Google searches that you have made. Are you ready to  find out what how Google knows about you ? 1.  Google Dashboard Google Dashboard offers  transparency and control over the personal data stored with your Google Account. You can  view  and  manage the data gener...

Wind Turbines

The Bahrain World Trade Center is the first skyscraper to have wind turbines integrated into the structure of the building.Three large wind turbines are suspended between two office towers. The towers are aerodynamically tapered to funnel wind and draw air into the turbines. This airfoil tapering allows the wind to enter the turbines at a perpendicular angle and increases air speed as much as 30 percent in each of the 95 ft wide turbine rotors. The turbines supply about 15 percent of the electricity used by the skyscraper - approximately the same amount of electricity used by 300 homes. Source: www.norwin.dk

Edible water balloons that could get rid of the need for plastic bottles

In case you didn’t know, bottled water is destroying the planet. We know that we need to be drinking plenty of water. It’s important. But the plastic bottles they’re sold in are terrible for the environment. One solution is using reusable bottles that you can fill from any nearby taps instead of buying a new bottle each time. Another solution is much more exciting. A group of engineers from Skipping Rocks Lab have developed a wonderful thing called The Ooho!. It’s a globe filled water that you can pop in your mouth whole. The outer shell is made of algae, so it’s edible and biodegradable. Meaning there’s no need for packaging or plastic – the globes of water are self-contained and ready to consume. Exciting, right? Plus they’re wobbly and they look cool, which is always a bonus. The team have now created a crowdfunding page to make their creation available to the public, with goals of selling The Ooho! at festival and marathons within the next 12 m...