Skip to main content

Scientists Build A First-Ever Artificial Kidney: Part Nano-Tech, Part Living Cells


BUILDING AN ELECTRONIC KIDNEY
Scientists at Vanderbilt University have developed a first-ever implantable artificial kidney. The artificial kidney contains a microchip filter and living kidney cells that can function using the patient’s heart, and this bio-synthetic kidney acts like the real organ, removing salt, water and waste products to keep patients with kidney failure from relying on dialysis.




The key to this new development is a breakthrough in the microchip itself, which uses silicon nanotechnology. “[Silicon nanotechnology] uses the same processes that were developed by the microelectronics industry for computers,” said Dr. William H. Fissell IV, who led the team that developed the device.
The microchips are affordable, precise, and function as an ideal filter.
Each artificial kidney will contain 15 microchips layered on top of each other. These chips will work as filters and also act a support system for the living cells needed. These living cells are kidney cells grown in a laboratory dish and nurtured to become a bioreactor of living cells. This membrane of living cells allows the device to distinguish between innocuous chemicals and harmful ones.
“Then they can reabsorb the nutrients your body needs and discard the wastes your body desperately wants to get rid of,” said Fissell.




The artificial kidney does not require any external power source and functions solely with the patient’s own blood flow; however, the challenge for the researchers is how to get blood to flow through a blood vessel and move through the device without any damage or clotting.
SOLVING A DONOR PROBLEM





To resolve this problem of blood clotting, Fissell and his team collaborated with Amanda Buck, a biomedical engineer, to figure out the potential areas in the device which could lead to blood clotting. With the help of fluid dynamics and computer models, Buck was able to streamline and refine the shape of the channels so that blood could flow smoothly through the device. 3D printing also allowed for immediate feedback on the resulting prototype and analysis of its performance.
Considering the extent of shortage in kidney donors, the device would alleviate the demand for organ transplants for kidney failure patients. This shortage is not without its victims. The National Kidney Foundation has estimated that in US alone over 460,000 have last-stage renal disease and that about 13 kidney patients die every day waiting for a kidney.
The U.S. Organ Procurement and Transplantation Network said that there are over 100,000 American transplant patients waiting for a new kidney with only less than a fifth receiving transplants last year. With more research, the device may give those on the waiting list a new hope.
Clinical studies are scheduled to begin near the end of 2017.





Comments

Popular posts from this blog

Silent headset lets users quietly commune with computers

Advances in voice recognition technology have seen it become a more viable form of computer interface, but it's not necessarily a quieter one. To prevent the click-clacking of keyboards being replaced by noisy man-machine conversations, MIT researchers are developing a new system called AlterEgo that allows people to talk to computers without speaking and listen to them without using their ears. At first glance, the AlterEgo headpiece looks like the product of a design student who didn't pay attention in class. Instead of the familiar combination of an earpiece and microphone, the device is a cumbersome white plastic curve like the jawbone of some strange animal that hangs off the wearer's ear and arcs over to touch the chin. It might look strange, but it's based on some fairly sophisticated technology. Inside the Alterego are electrodes that scan the jaw and face from neuromuscular signals produced when the wearer thinks about verbalizing words without

Qualcomm showcases the Snapdragon S4 ahead of Mobile World Congress

We’ve already heard about Qualcomm’s latest processor, the Snapdragon S4 , which will be quad-core and utilize LTE. Qualcomm took the time to give us some details ahead of Mobile World Congress. The new SoC now supports up to three cameras (two in the back for 3D and one front-facing), 20-megapixels, and recording video at 1080p (30fps). We can also expect zero shutter lag, 3A processing (autofocus, auto exposure and auto white balance), and improved blink/smile detection, gaze estimation, range finding and image stabilization. Last but not least, it supports gesture detection/control, augmented reality , and computer vision (via Qualcomm’s FastCV). Hit the break for a couple of videos featuring image stabilization and gestures.

GitHub launches new mobile app for Android and iOS platforms

Github is one of the leading software development platform in the world that helps developer community to build, discover and share better software. Github, owned by tech giant Microsoft Corporation provides developers with a large number of tools and resources to get their projects off the ground. Github released its new free mobile app for Android and iOS platforms after several months of beta testing. The app is primarily designed to help the developer community to manage their projects when they not using their PC, letting them organize tasks, respond to the comments, give feedback on issues etc.   Github notifications shows up in an inbox like the E Mail notifications, you can swipe to wrap up a task or can save the modifications to come back later. This can be new favourite way for the developers to organize their tasks.  The app features a clean, intuitive, beautiful UI, with all attractive features you would expect from a mobile version of the platform, incl