Skip to main content

Tiny solar cells could soon charge electric vehicles while on the road

Researchers claim to have hit on the right combination of solar cell type and battery to charge an electric vehicle battery with higher efficiency than ever before. The team behind the research says the system could soon make it possible to attach small cells to a car that will charge the vehicle while being driven – on a sunny day, at least.
The researchers from Case Western Reserve University wired four perovskite solar cells in series to directly photo-charge lithium batteries with 7.8 percent efficiency, which they believe to be the most efficient configuration reported to date.
"We found the right match between the solar cell and battery... Others have used polymer solar cells to charge lithium batteries, but not with this efficiency," said Liming Dai, the leader of the research team, adding that the coupling appears to have outperformed all other reported pairings of photo-charging components and compatible batteries or super-capacitors.
Perovskite has been one of the most promising solar cell technologies to emerge of late, thanks to its ability to convert a broader spectrum of sunlight to electricity when compared to silicon-based cells. The crystalline material has a structure identical to the mineral of the same name, and its potential for highly efficient power conversion and a quick payback in terms of energy savings over traditional power sources have made it one of the fastest growing sectors in the solar power field. As a sort of added bonus, it has even been found to emit light at night, functioning similar to an LED.
Dai's lab created cells with three layers converted into a single perovskite film and then wired four of the 1 mm square cells in series, achieving a solar-to-electric power conversion efficiency of 12.65 percent.
When hooked up to charge small coin-sized lithium-ion batteries, the team achieved a conversion and storage efficiency of 7.8 percent and maintained it over a number of cycles.
"We envision, in the not too distant future, this is a system that you could have at home to refuel your car and, eventually, because perovskite solar cells can be made as a flexible film, they would be on the car itself," said contributing author Jiantie Xu.
This would seem to make the technology a perfect fit for cars with a more traditional look than the Immortus solar sports car, whose every available sky-facing surface is covered in 7 sq m (75 sq ft) of solar photovoltaic paneling.
The research was published in the most recent issue of Nature Communications.

Comments

Popular posts from this blog

Solar car hits U.S. in round-the-world jaunt

Last October, the SolarWorld GT solar-powered car set out from Darwin, Australia on a drive around the world. It has since driven 3,001 kilometers (1,865 miles) across Australia, logged 1,947 km (1,210 miles) crossing New Zealand and been shipped across the Pacific Ocean. This Friday, it will embark on the U.S. leg of its journey, as it sets out across America from the University of California, Santa Barbara.   The SolarWorld GT is the result of a collaboration between solar panel manufacturer SolarWorld, and Bochum University of Applied Sciences in Germany. The four-wheeled, two-door, two-seat car gathers solar energy through photovoltaic panels built into its roof, with its solar generator offering a peak performance of 823 watts. Custom hub motors are located in both of the front wheels. The vehicle manages an average speed of 50 km/h (31 mph), with a claimed top speed of 100 km/h (62 mph). In order to demonstrate that solar powered cars needn't be a radical...

Biocomputer, Alternative To Quantum Computers

A team of international scientists from Canada, the U.K., Germany, the Netherlands and Sweden announced Friday that they had developed a model biological supercomputer capable of solving complex mathematical problems using far less energy than standard electronic supercomputers. The model “biocomputer,” which is roughly the size of a book, is powered by Adenosine triphosphate (ATP) — dubbed the “molecular unit of currency.” According to description of the device, published in the  Proceedings of the National Academy of Sciences , the biocomputer uses proteins present in all living cells to function. It uses a strategy similar to that of quantum computers, which use qubits — the quantum computing equivalents of bits — to perform “parallel computation,” wherein  computers are able to process information quickly and accurately by performing several calculations simultaneously, rather than sequentially. In the case of the biocomputer, the qubits are replaced with ...

Qualcomm showcases the Snapdragon S4 ahead of Mobile World Congress

We’ve already heard about Qualcomm’s latest processor, the Snapdragon S4 , which will be quad-core and utilize LTE. Qualcomm took the time to give us some details ahead of Mobile World Congress. The new SoC now supports up to three cameras (two in the back for 3D and one front-facing), 20-megapixels, and recording video at 1080p (30fps). We can also expect zero shutter lag, 3A processing (autofocus, auto exposure and auto white balance), and improved blink/smile detection, gaze estimation, range finding and image stabilization. Last but not least, it supports gesture detection/control, augmented reality , and computer vision (via Qualcomm’s FastCV). Hit the break for a couple of videos featuring image stabilization and gestures.