Skip to main content

Super-low loss quantum energy transport could revolutionize sunlight to energy conversion

The use of sunlight as an energy source is achieved in a number of ways, from conversion to electricity via photovoltaic (PV) panels, concentrated heat to drive steam turbines, and even hydrogen generation via artificial photosynthesis. Unfortunately, much of the light energy in PV and photosynthesis systems is lost as heat due to the thermodynamic inefficiencies inherent in the process of converting the incoming energy from one form to another. Now scientists working at the University of Bayreuth claim to have created a super-efficient light-energy transport conduit that exhibits almost zero loss, and shows promise as the missing link in the sunlight to energy conversion process.
Using specifically-generated nanofibers at its core, this is reported to be the very first time a directed energy transport system has been exhibited that effectively moves intact light energy over a distance of several micrometers, and at room temperature. And, according to the researchers, the transference of energy from block to block in the nanofibers is only adequately explained at the quantum level with coherence effects driving the energy along the individual fibers.
Quantum coherence is the phenomenon where subatomic waves are closely interlinked via shared electromagnetic fields. As they travel in phase together, these quantum coherent waves start to act as one very large synchronous wave propagating across a medium. In the case of the University of Bayreuth device, these coherent waves of energy travel across the molecular building blocks from which the nanofibers are made, passing from block to block and moving as one continuous energy wave would in unbound free space.
It is this effect that the scientists say is driving the super-low energy loss capabilities of their device, and have confirmed this observation using a variety of microscopy techniques to visualize the conveyance of excitation energy along the nanofibers.
The nanofibers themselves are specifically-prepared supramolecular strands, manufactured from a chemically bespoke combination of carbonyl-bridged (molecularly connected) triarylamine (an organic compound) combined with three naphthalimide bithiophene chromophores (copolymer molecules that absorb and reflect specific wavelengths of light). When brought together under particular conditions, these elements spontaneously self-assemble into 4 micrometer long, 0.005 micrometer diameter nanofibers made up of more than 10,000 identical chemical building blocks.
"These highly promising nanostructures demonstrate that carefully tailoring materials for the efficient transport of light energy is an emerging research area," said Dr. Richard Hildner, an experimental physicist at the University of Bayreuth.
The results of this research were recently published in the journal Nature.

Comments

Popular posts from this blog

Google and Stanford early adopters of Honda Fit EV

Honda's first all-electric vehicle is hitting the streets a little early. The  Honda Fit EV  debuted at the Los Angeles Auto Show in November 2011, and it's expected to be     available for lease this summer. However,  Honda announced  that Google and Stanford University got a special early delivery of the tiny EV this week.The Honda Fit EV is equipped with a 20kWh lithium ion battery, and has an EPA estimated driving range of 76 miles. Google added the EV to its  car -sharing service for employees, dubbed the G-Fleet, in    Mountain View, Calif. The search giant maintains several electric and plug-in vehicles that it uses for research and to cart Googlers around town and between buildings on campus. Stanford University also is an early adopter of the Fit EV, but will be using it primarily for research. The university's automotive research department will study the difference in psychological and physical reactions of using battery...

Hand-manipulated objects and transparent displays - the computer desktop of tomorrow

A see-through screen, digital 3D objects manipulated by hand, perspective adjustments according to the user's viewing angle - these are the core features of a prototype computer desktop user interface created by Microsoft's Applied Sciences Group. The prototype uses a "unique" Samsung transparent OLED display through which the user can see their own hands to manipulate 3D objects which appear to be behind the screen. A demo video appears to show a working prototype of a computer markedly different from those we use today. Yes it includes a familiar keyboard and trackpad - but these are placed behind the OLED display. The user simply lifts their hands from these input devices to manipulate on-screen (or more accurately  behind -screen) objects, such as selecting a file or window. The video shows the interface in action with a series of program windows stacked behind one another, with the user selecting the desired program by hand, using the depth of the w...

Bioengineers develop smart, self-healing hydrogel

Velcro is pretty handy stuff, but imagine if there was a soft, stretchy material with the same qualities. Well, now there is. Scientists from the University of California, San Diego have created a self-healing hydrogel that binds together in seconds, essentially copying the Velcro process at a molecular level. The new material could potentially find use in medical sutures, targeted drug delivery, industrial sealants and self-healing plastics. The secret to the jello-like polymer hydrogel is its "dangling side chain" molecules, that reach out toward one another like long, spindly fingers. When developing the gel, a team led by bioengineer Shyni Varghese ran computer simulations, in order to determine the optimal length for these molecules. The resulting substance is capable of healing cuts made to itself - or of bonding with another piece of hydrogel - almost instantly. The behavior of the material can be controlled by adjusting the pH of its environment. In lab t...