Skip to main content

Super-low loss quantum energy transport could revolutionize sunlight to energy conversion

The use of sunlight as an energy source is achieved in a number of ways, from conversion to electricity via photovoltaic (PV) panels, concentrated heat to drive steam turbines, and even hydrogen generation via artificial photosynthesis. Unfortunately, much of the light energy in PV and photosynthesis systems is lost as heat due to the thermodynamic inefficiencies inherent in the process of converting the incoming energy from one form to another. Now scientists working at the University of Bayreuth claim to have created a super-efficient light-energy transport conduit that exhibits almost zero loss, and shows promise as the missing link in the sunlight to energy conversion process.
Using specifically-generated nanofibers at its core, this is reported to be the very first time a directed energy transport system has been exhibited that effectively moves intact light energy over a distance of several micrometers, and at room temperature. And, according to the researchers, the transference of energy from block to block in the nanofibers is only adequately explained at the quantum level with coherence effects driving the energy along the individual fibers.
Quantum coherence is the phenomenon where subatomic waves are closely interlinked via shared electromagnetic fields. As they travel in phase together, these quantum coherent waves start to act as one very large synchronous wave propagating across a medium. In the case of the University of Bayreuth device, these coherent waves of energy travel across the molecular building blocks from which the nanofibers are made, passing from block to block and moving as one continuous energy wave would in unbound free space.
It is this effect that the scientists say is driving the super-low energy loss capabilities of their device, and have confirmed this observation using a variety of microscopy techniques to visualize the conveyance of excitation energy along the nanofibers.
The nanofibers themselves are specifically-prepared supramolecular strands, manufactured from a chemically bespoke combination of carbonyl-bridged (molecularly connected) triarylamine (an organic compound) combined with three naphthalimide bithiophene chromophores (copolymer molecules that absorb and reflect specific wavelengths of light). When brought together under particular conditions, these elements spontaneously self-assemble into 4 micrometer long, 0.005 micrometer diameter nanofibers made up of more than 10,000 identical chemical building blocks.
"These highly promising nanostructures demonstrate that carefully tailoring materials for the efficient transport of light energy is an emerging research area," said Dr. Richard Hildner, an experimental physicist at the University of Bayreuth.
The results of this research were recently published in the journal Nature.

Comments

Popular posts from this blog

10 URLs to Find Out What Google Knows About You

Google is much more than just a search giant. It is also home to many of your favorite products: Gmail, YouTube, and Chrome, just to name a few. Apart from that, it also offers many products to help you  keep track of your data . Most of these are  hidden deep  inside the My Account dashboard, which many users don’t really know of. These hidden tools  may reveal interesting details  about your usage of Google’s many services. We’ve compiled a list of important Google URLs of some  hidden tools  that carry information of what you did with Google, mostly from the searches that you have made on their many products, the voice searches and typed out Google searches that you have made. Are you ready to  find out what how Google knows about you ? 1.  Google Dashboard Google Dashboard offers  transparency and control over the personal data stored with your Google Account. You can  view  and  manage the data gener...

Edible water balloons that could get rid of the need for plastic bottles

In case you didn’t know, bottled water is destroying the planet. We know that we need to be drinking plenty of water. It’s important. But the plastic bottles they’re sold in are terrible for the environment. One solution is using reusable bottles that you can fill from any nearby taps instead of buying a new bottle each time. Another solution is much more exciting. A group of engineers from Skipping Rocks Lab have developed a wonderful thing called The Ooho!. It’s a globe filled water that you can pop in your mouth whole. The outer shell is made of algae, so it’s edible and biodegradable. Meaning there’s no need for packaging or plastic – the globes of water are self-contained and ready to consume. Exciting, right? Plus they’re wobbly and they look cool, which is always a bonus. The team have now created a crowdfunding page to make their creation available to the public, with goals of selling The Ooho! at festival and marathons within the next 12 m...

Casio PicapiCamera iPhone app is the world's first to use visible light communication technology

PicapiCamera, developed by Casio, is the world's first iPhone app which uses visible light communication technology. To send and receive data via the app, the message to be sent is encoded using red, green and blue flashing lights and shown on the display. The receiver points their iPhone at the flashing lights and the data is transferred. "There are two approaches to communication using visible light. One is to embed data in the light from illumination sources, by turning it on and off at high speed, as a natural way of communicating information. With that approach, devices use photodiodes. The other approach involves image sensors. A device that captures light is a camera, so the idea is to relate light obtained by a camera to information. We're using the camera approach - visible light communication through image sensors." "When exchanging addresses, this system can send addresses to up to five people, rather than just one-to-one." "If yo...