Skip to main content

Plastic Road -A lightweight design, a fraction of the construction time, virtually maintenance free, and three times the expected lifespan.

New Innovations

PlasticRoad features numerous advantages compared to conventional roads, both in terms of construction and maintenance. Plastic is much more sustainable and opens the door for a number of new innovations such as power generation, quiet road surfaces, heated roads and modular construction. Additionally, the PlasticRoad design features a 'hollow' space that can be used for cables, pipes and rainwater.


 Prefabrication
PlasticRoad's concept is in line with developments such as Cradle to Cradle and The Ocean Cleanup: the initiative to free the seas of 'plastic soup'. Recycled plastic is made into prefabricated road parts that can be installed in one piece. The prefabricated production and the lightweight design also make the construction of a PlasticRoad into a much simpler task. Roads can be built in weeks instead of months. It is also much easier to control the quality of the road (stiffness, water drainage etc.).

More resistant to the elements and wear

PlasticRoad is a virtually maintenance free product. It is unaffected by corrosion and the weather. The road structure handles temperatures as low as -40 degrees and as high as 80 degrees Celsius with ease. It is also much more resistant to chemical corrosion. Estimations predict that the lifespan of roads will be tripled. That means less road maintenance and less to no traffic jams and detours.

Space for cables, pipes, and water

A major advantage of PlasticRoad is the hollow structure that can simply be installed on a surface of sand. In addition to the options mentioned above, it is also possible to integrate other elements in the prefabrication phase. These elements include traffic loops sensors, measuring equipment, and connections for light poles.



Source :- PlasticRoad

Comments

Popular posts from this blog

Silent headset lets users quietly commune with computers

Advances in voice recognition technology have seen it become a more viable form of computer interface, but it's not necessarily a quieter one. To prevent the click-clacking of keyboards being replaced by noisy man-machine conversations, MIT researchers are developing a new system called AlterEgo that allows people to talk to computers without speaking and listen to them without using their ears. At first glance, the AlterEgo headpiece looks like the product of a design student who didn't pay attention in class. Instead of the familiar combination of an earpiece and microphone, the device is a cumbersome white plastic curve like the jawbone of some strange animal that hangs off the wearer's ear and arcs over to touch the chin. It might look strange, but it's based on some fairly sophisticated technology. Inside the Alterego are electrodes that scan the jaw and face from neuromuscular signals produced when the wearer thinks about verbalizing words without

Qualcomm showcases the Snapdragon S4 ahead of Mobile World Congress

We’ve already heard about Qualcomm’s latest processor, the Snapdragon S4 , which will be quad-core and utilize LTE. Qualcomm took the time to give us some details ahead of Mobile World Congress. The new SoC now supports up to three cameras (two in the back for 3D and one front-facing), 20-megapixels, and recording video at 1080p (30fps). We can also expect zero shutter lag, 3A processing (autofocus, auto exposure and auto white balance), and improved blink/smile detection, gaze estimation, range finding and image stabilization. Last but not least, it supports gesture detection/control, augmented reality , and computer vision (via Qualcomm’s FastCV). Hit the break for a couple of videos featuring image stabilization and gestures.

Water purification: Running fuel cells on bacteria to purify water

Researchers in Norway have succeeded in getting bacteria to power a fuel cell. The "fuel" used is wastewater, and the products of the process are purified water droplets and electricity. This is an environmentally-friendly process for the purification of water derived from industrial processes and suchlike. It also generates small amounts of electricity -- in practice enough to drive a small fan, a sensor or a light-emitting diode. In the future, the researchers hope to scale up this energy generation to enable the same energy to be used to power the water purification process , which commonly consists of many stages, often involving mechanical and energy-demanding decontamination steps at its outset. Nature's own generator The biological fuel cell is powered by entirely natural processes -- with the help of living microorganisms. "In simple terms, this type of fuel cell works because the bacteria consume the waste materials found in the water," explains SINTEF