Skip to main content

UCLA produces transparent solar cells that harness infrared light



A UCLA team has developed a new type of solar cell that is nearly 70 percent transparent to the naked eye. The plastic cells, which use infrared instead of visible light, are also more economical than other types of cells because they are made by an inexpensive polymer solution process and nanowire technology, potentially paving the way for cheaper solar windows.
Solar panels are great. The only problem is that they take up quite a bit of space. To run a building off of solar panels you’d pretty much have to cover it with them. Since people like things called “windows,” that’s usually not an option. Even running small devices off the sun is a bother since the panels are often bulky, take up areas wanted for other purposes or need to be placed somewhere really inconvenient, like the back of a phone. If only solar cells were thin films that you could see through, then you could turn windows and tablet displays into solar panels.
We’ve looked at the idea of transparent solar panels before, but most solutions until now have been only “sort of” transparent with wires or beads embedded in or coated on glass. True, they let light through, but since the opaque components need to absorb some light to generate power, the effect is a bit like tinted glass. They also tend to be a bit on the expensive side.
Enter Yang Yang, a UCLA professor of materials science and engineering and director of the Nano Renewable Energy Center at the California NanoSystems Institute (CNSI). He and his team have developed a new Polymer Solar Cell (PSC). This photoactive plastic acts as a high-performance transparent solar cell that lets in a much higher percentage of light. The reason is that the PSC doesn’t generate power from visible light. Instead, it absorbs invisible infrared light and converts that into electricity. This means that the cell is 70 percent transparent to the eye.
Another advantage of the PSC is that it’s made using a solution process that Yang has been improving upon since 2009. In this process, the PSC is formed by dissolving the near-infrared light-sensitive polymer in a solvent, applying it to the film base and then baking it. The cost is further brought down and the transparency improved by replacing metal conductors with silver nanowire and titanium dioxide nanoparticles. The result is a near-transparent photoactive film that is four percent effective.
According to Yang, "these results open the potential for visibly transparent polymer solar cells as add-on components of portable electronics, smart windows and building-integrated photovoltaics and in other applications. Our new PSCs are made from plastic-like materials and are lightweight and flexible. More importantly, they can be produced in high volume at low cost."
If the PSC or some variant proves successful, it may mean that one day we’ll see skyscrapers making their own power from their vast curtains of windows, self-powering smartphones that look like slabs of glass and maybe even solar powered glass patio tables.
Source: UCLA

Comments

Popular posts from this blog

Solar car hits U.S. in round-the-world jaunt

Last October, the SolarWorld GT solar-powered car set out from Darwin, Australia on a drive around the world. It has since driven 3,001 kilometers (1,865 miles) across Australia, logged 1,947 km (1,210 miles) crossing New Zealand and been shipped across the Pacific Ocean. This Friday, it will embark on the U.S. leg of its journey, as it sets out across America from the University of California, Santa Barbara.   The SolarWorld GT is the result of a collaboration between solar panel manufacturer SolarWorld, and Bochum University of Applied Sciences in Germany. The four-wheeled, two-door, two-seat car gathers solar energy through photovoltaic panels built into its roof, with its solar generator offering a peak performance of 823 watts. Custom hub motors are located in both of the front wheels. The vehicle manages an average speed of 50 km/h (31 mph), with a claimed top speed of 100 km/h (62 mph). In order to demonstrate that solar powered cars needn't be a radical...

Biocomputer, Alternative To Quantum Computers

A team of international scientists from Canada, the U.K., Germany, the Netherlands and Sweden announced Friday that they had developed a model biological supercomputer capable of solving complex mathematical problems using far less energy than standard electronic supercomputers. The model “biocomputer,” which is roughly the size of a book, is powered by Adenosine triphosphate (ATP) — dubbed the “molecular unit of currency.” According to description of the device, published in the  Proceedings of the National Academy of Sciences , the biocomputer uses proteins present in all living cells to function. It uses a strategy similar to that of quantum computers, which use qubits — the quantum computing equivalents of bits — to perform “parallel computation,” wherein  computers are able to process information quickly and accurately by performing several calculations simultaneously, rather than sequentially. In the case of the biocomputer, the qubits are replaced with ...

Qualcomm showcases the Snapdragon S4 ahead of Mobile World Congress

We’ve already heard about Qualcomm’s latest processor, the Snapdragon S4 , which will be quad-core and utilize LTE. Qualcomm took the time to give us some details ahead of Mobile World Congress. The new SoC now supports up to three cameras (two in the back for 3D and one front-facing), 20-megapixels, and recording video at 1080p (30fps). We can also expect zero shutter lag, 3A processing (autofocus, auto exposure and auto white balance), and improved blink/smile detection, gaze estimation, range finding and image stabilization. Last but not least, it supports gesture detection/control, augmented reality , and computer vision (via Qualcomm’s FastCV). Hit the break for a couple of videos featuring image stabilization and gestures.