Skip to main content

Chemically-powered, autonomous Octopus could spawn a new generation of soft robots

Harvard engineers have come up with a robot octopus that is made entirely of soft materials, is autonomous, and requires no tether to operate. The Octobot combines 3D printing, mechanical engineering, and microfluidics to create what could be the first in a new generation of soft, autonomous machines.




If you're going to make a soft robot, you could do worse than choose an octopus as inspiration. The most intelligent of the molluscs and one of the most advanced invertebrates, its dexterity and ability to manipulate are all combined with a body completely without hard parts save for its beak, which robots don't need. This makes it an ideal model for soft robots that strive to go beyond mechanical worms, but there's more to making a soft robot than choosing an animal to mimic.
The current generation of soft robots are limited in that they aren't entirely soft. Many of them include hard components, such as heating wires, batteries, and circuit boards for control systems, or they're tethered to some sort of outboard power and control source.




To remove these obstacles, a team led by Harvard researchers Robert Wood and Jennifer A Lewis developed the Octobot, which not only does away with any sort of internal skeleton, but moves using a pneumatic system. In this case, it's a series of tubes and bladders powered by hydrogen peroxide. When the highly reactive peroxide encounters a platinum catalyst, it decomposes into water vapor and oxygen.
As this mixture expands, it causes the Octobot's tentacles to move. But the clever bit is that this simple reaction is controlled not by electronics, but by a soft analog of a simple electronic oscillator that guides and regulates the robot's movements to perform desired functions.
Another aspect of Octobot is that it's built using a hybrid assembly process that combines soft lithography, molding, and 3D printing. The latter is particularly important because it allows the engineers to rapidly fabricate the fuel storage, power, and actuator systems directly inside the soft robot to create an integrated design.




he Harvard team hopes that this proof of concept will lead to more complex versions of Octobot. In that meantime, they are working on how to get the robot to swim, crawl, and otherwise interact with its environment.
"One long-standing vision for the field of soft robotics has been to create robots that are entirely soft, but the struggle has always been in replacing rigid components like batteries and electronic controls with analogous soft systems and then putting it all together," says Wood. "This research demonstrates that we can easily manufacture the key components of a simple, entirely soft robot, which lays the foundation for more complex designs."




The research was published in Nature.
Source: Harvard

Comments

Popular posts from this blog

Google and Stanford early adopters of Honda Fit EV

Honda's first all-electric vehicle is hitting the streets a little early. The  Honda Fit EV  debuted at the Los Angeles Auto Show in November 2011, and it's expected to be     available for lease this summer. However,  Honda announced  that Google and Stanford University got a special early delivery of the tiny EV this week.The Honda Fit EV is equipped with a 20kWh lithium ion battery, and has an EPA estimated driving range of 76 miles. Google added the EV to its  car -sharing service for employees, dubbed the G-Fleet, in    Mountain View, Calif. The search giant maintains several electric and plug-in vehicles that it uses for research and to cart Googlers around town and between buildings on campus. Stanford University also is an early adopter of the Fit EV, but will be using it primarily for research. The university's automotive research department will study the difference in psychological and physical reactions of using battery...

Hand-manipulated objects and transparent displays - the computer desktop of tomorrow

A see-through screen, digital 3D objects manipulated by hand, perspective adjustments according to the user's viewing angle - these are the core features of a prototype computer desktop user interface created by Microsoft's Applied Sciences Group. The prototype uses a "unique" Samsung transparent OLED display through which the user can see their own hands to manipulate 3D objects which appear to be behind the screen. A demo video appears to show a working prototype of a computer markedly different from those we use today. Yes it includes a familiar keyboard and trackpad - but these are placed behind the OLED display. The user simply lifts their hands from these input devices to manipulate on-screen (or more accurately  behind -screen) objects, such as selecting a file or window. The video shows the interface in action with a series of program windows stacked behind one another, with the user selecting the desired program by hand, using the depth of the w...

Bioengineers develop smart, self-healing hydrogel

Velcro is pretty handy stuff, but imagine if there was a soft, stretchy material with the same qualities. Well, now there is. Scientists from the University of California, San Diego have created a self-healing hydrogel that binds together in seconds, essentially copying the Velcro process at a molecular level. The new material could potentially find use in medical sutures, targeted drug delivery, industrial sealants and self-healing plastics. The secret to the jello-like polymer hydrogel is its "dangling side chain" molecules, that reach out toward one another like long, spindly fingers. When developing the gel, a team led by bioengineer Shyni Varghese ran computer simulations, in order to determine the optimal length for these molecules. The resulting substance is capable of healing cuts made to itself - or of bonding with another piece of hydrogel - almost instantly. The behavior of the material can be controlled by adjusting the pH of its environment. In lab t...