Skip to main content

Chemically-powered, autonomous Octopus could spawn a new generation of soft robots

Harvard engineers have come up with a robot octopus that is made entirely of soft materials, is autonomous, and requires no tether to operate. The Octobot combines 3D printing, mechanical engineering, and microfluidics to create what could be the first in a new generation of soft, autonomous machines.




If you're going to make a soft robot, you could do worse than choose an octopus as inspiration. The most intelligent of the molluscs and one of the most advanced invertebrates, its dexterity and ability to manipulate are all combined with a body completely without hard parts save for its beak, which robots don't need. This makes it an ideal model for soft robots that strive to go beyond mechanical worms, but there's more to making a soft robot than choosing an animal to mimic.
The current generation of soft robots are limited in that they aren't entirely soft. Many of them include hard components, such as heating wires, batteries, and circuit boards for control systems, or they're tethered to some sort of outboard power and control source.




To remove these obstacles, a team led by Harvard researchers Robert Wood and Jennifer A Lewis developed the Octobot, which not only does away with any sort of internal skeleton, but moves using a pneumatic system. In this case, it's a series of tubes and bladders powered by hydrogen peroxide. When the highly reactive peroxide encounters a platinum catalyst, it decomposes into water vapor and oxygen.
As this mixture expands, it causes the Octobot's tentacles to move. But the clever bit is that this simple reaction is controlled not by electronics, but by a soft analog of a simple electronic oscillator that guides and regulates the robot's movements to perform desired functions.
Another aspect of Octobot is that it's built using a hybrid assembly process that combines soft lithography, molding, and 3D printing. The latter is particularly important because it allows the engineers to rapidly fabricate the fuel storage, power, and actuator systems directly inside the soft robot to create an integrated design.




he Harvard team hopes that this proof of concept will lead to more complex versions of Octobot. In that meantime, they are working on how to get the robot to swim, crawl, and otherwise interact with its environment.
"One long-standing vision for the field of soft robotics has been to create robots that are entirely soft, but the struggle has always been in replacing rigid components like batteries and electronic controls with analogous soft systems and then putting it all together," says Wood. "This research demonstrates that we can easily manufacture the key components of a simple, entirely soft robot, which lays the foundation for more complex designs."




The research was published in Nature.
Source: Harvard

Comments

Popular posts from this blog

10 URLs to Find Out What Google Knows About You

Google is much more than just a search giant. It is also home to many of your favorite products: Gmail, YouTube, and Chrome, just to name a few. Apart from that, it also offers many products to help you  keep track of your data . Most of these are  hidden deep  inside the My Account dashboard, which many users don’t really know of. These hidden tools  may reveal interesting details  about your usage of Google’s many services. We’ve compiled a list of important Google URLs of some  hidden tools  that carry information of what you did with Google, mostly from the searches that you have made on their many products, the voice searches and typed out Google searches that you have made. Are you ready to  find out what how Google knows about you ? 1.  Google Dashboard Google Dashboard offers  transparency and control over the personal data stored with your Google Account. You can  view  and  manage the data gener...

Edible water balloons that could get rid of the need for plastic bottles

In case you didn’t know, bottled water is destroying the planet. We know that we need to be drinking plenty of water. It’s important. But the plastic bottles they’re sold in are terrible for the environment. One solution is using reusable bottles that you can fill from any nearby taps instead of buying a new bottle each time. Another solution is much more exciting. A group of engineers from Skipping Rocks Lab have developed a wonderful thing called The Ooho!. It’s a globe filled water that you can pop in your mouth whole. The outer shell is made of algae, so it’s edible and biodegradable. Meaning there’s no need for packaging or plastic – the globes of water are self-contained and ready to consume. Exciting, right? Plus they’re wobbly and they look cool, which is always a bonus. The team have now created a crowdfunding page to make their creation available to the public, with goals of selling The Ooho! at festival and marathons within the next 12 m...

Casio PicapiCamera iPhone app is the world's first to use visible light communication technology

PicapiCamera, developed by Casio, is the world's first iPhone app which uses visible light communication technology. To send and receive data via the app, the message to be sent is encoded using red, green and blue flashing lights and shown on the display. The receiver points their iPhone at the flashing lights and the data is transferred. "There are two approaches to communication using visible light. One is to embed data in the light from illumination sources, by turning it on and off at high speed, as a natural way of communicating information. With that approach, devices use photodiodes. The other approach involves image sensors. A device that captures light is a camera, so the idea is to relate light obtained by a camera to information. We're using the camera approach - visible light communication through image sensors." "When exchanging addresses, this system can send addresses to up to five people, rather than just one-to-one." "If yo...