Skip to main content

Chemically-powered, autonomous Octopus could spawn a new generation of soft robots

Harvard engineers have come up with a robot octopus that is made entirely of soft materials, is autonomous, and requires no tether to operate. The Octobot combines 3D printing, mechanical engineering, and microfluidics to create what could be the first in a new generation of soft, autonomous machines.




If you're going to make a soft robot, you could do worse than choose an octopus as inspiration. The most intelligent of the molluscs and one of the most advanced invertebrates, its dexterity and ability to manipulate are all combined with a body completely without hard parts save for its beak, which robots don't need. This makes it an ideal model for soft robots that strive to go beyond mechanical worms, but there's more to making a soft robot than choosing an animal to mimic.
The current generation of soft robots are limited in that they aren't entirely soft. Many of them include hard components, such as heating wires, batteries, and circuit boards for control systems, or they're tethered to some sort of outboard power and control source.




To remove these obstacles, a team led by Harvard researchers Robert Wood and Jennifer A Lewis developed the Octobot, which not only does away with any sort of internal skeleton, but moves using a pneumatic system. In this case, it's a series of tubes and bladders powered by hydrogen peroxide. When the highly reactive peroxide encounters a platinum catalyst, it decomposes into water vapor and oxygen.
As this mixture expands, it causes the Octobot's tentacles to move. But the clever bit is that this simple reaction is controlled not by electronics, but by a soft analog of a simple electronic oscillator that guides and regulates the robot's movements to perform desired functions.
Another aspect of Octobot is that it's built using a hybrid assembly process that combines soft lithography, molding, and 3D printing. The latter is particularly important because it allows the engineers to rapidly fabricate the fuel storage, power, and actuator systems directly inside the soft robot to create an integrated design.




he Harvard team hopes that this proof of concept will lead to more complex versions of Octobot. In that meantime, they are working on how to get the robot to swim, crawl, and otherwise interact with its environment.
"One long-standing vision for the field of soft robotics has been to create robots that are entirely soft, but the struggle has always been in replacing rigid components like batteries and electronic controls with analogous soft systems and then putting it all together," says Wood. "This research demonstrates that we can easily manufacture the key components of a simple, entirely soft robot, which lays the foundation for more complex designs."




The research was published in Nature.
Source: Harvard

Comments

Popular posts from this blog

Nine government sites hit by cyber attacks: NIC

The National Informatics Center (NIC) has revealed that as many as nine government websites were defaced by recent cyber attacks. The center further said that the servers, which hosts these government sites, suffer a number of hacking attempts on a daily basis. The websites www.kumbh2010haridwar.gov.in, www.ueppcb.uk.gov.in, www.gov.ua.nic.in/ujn, www.cdodoon.gov.in, www.arunachal.nic.in,www.bee-india.nic.in, www.civilsupplieskerala.gov.in, www.mpcb.gov.in and www.informatics.nic.in were  defaced , prompting authorities to  ramp up  the cyber security safeguards. In an RTI reply, the NIC, which reports to the Ministry of Communications and Information Technology, said that it was impossible for the body to accurately quantify these attacks but they are usually blocked by security controls put in place. The Ministry was asked to provide details of hacking attempts made on the governments websites in the last ten years (2001-11) along with url names of the portal...

Google and Stanford early adopters of Honda Fit EV

Honda's first all-electric vehicle is hitting the streets a little early. The  Honda Fit EV  debuted at the Los Angeles Auto Show in November 2011, and it's expected to be     available for lease this summer. However,  Honda announced  that Google and Stanford University got a special early delivery of the tiny EV this week.The Honda Fit EV is equipped with a 20kWh lithium ion battery, and has an EPA estimated driving range of 76 miles. Google added the EV to its  car -sharing service for employees, dubbed the G-Fleet, in    Mountain View, Calif. The search giant maintains several electric and plug-in vehicles that it uses for research and to cart Googlers around town and between buildings on campus. Stanford University also is an early adopter of the Fit EV, but will be using it primarily for research. The university's automotive research department will study the difference in psychological and physical reactions of using battery...

Solar car hits U.S. in round-the-world jaunt

Last October, the SolarWorld GT solar-powered car set out from Darwin, Australia on a drive around the world. It has since driven 3,001 kilometers (1,865 miles) across Australia, logged 1,947 km (1,210 miles) crossing New Zealand and been shipped across the Pacific Ocean. This Friday, it will embark on the U.S. leg of its journey, as it sets out across America from the University of California, Santa Barbara.   The SolarWorld GT is the result of a collaboration between solar panel manufacturer SolarWorld, and Bochum University of Applied Sciences in Germany. The four-wheeled, two-door, two-seat car gathers solar energy through photovoltaic panels built into its roof, with its solar generator offering a peak performance of 823 watts. Custom hub motors are located in both of the front wheels. The vehicle manages an average speed of 50 km/h (31 mph), with a claimed top speed of 100 km/h (62 mph). In order to demonstrate that solar powered cars needn't be a radical...