Skip to main content

Random vibrations turn tiny trees into power plants






Step aside windmills, there's a new way to harvest kinetic energy in the works. A research team at the Ohio State University has created electromechanical devices that look like tiny leafless trees and can generate electricity when they are moved by seismic activity, the slight swaying movements of a tall building, or the vibrations from traffic on a bridge.
Before we start envisioning great fields of wriggling tree-like power generators, it should be stated that this idea is for situations where small amounts of power are required.




In a study published last month, the researchers described their experiments with the new vibrational energy-harvesting platform. "Buildings sway ever so slightly in the wind, bridges oscillate when we drive on them and car suspensions absorb bumps in the road," said project leader Ryan Harne. "In fact, there's a massive amount of kinetic energy associated with those motions that is otherwise lost. We want to recover and recycle some of that energy."
The initial goal is to power low-voltage sensors that maintain the structural integrity of civil structures such as bridges or the girders deep inside high rise buildings. Currently this job is undertaken by battery or grid-powered sensors, methods that are expensive and hard to maintain in remote locations. Sensors that could capture vibrational energy could do their job in a completely self-sufficient way.




In the past, researchers have assumed that random movements generated in nature couldn't possibly be the most suitable option for creating the consistent oscillations needed to make usable electricity. As such, artificial, non-random vibrations have been used in experiments. By contrast, the Ohio team has explored ways to capture energy generated in a more natural, random way.
Through mathematical modeling, Harne worked out that it is possible for tree-like structures to maintain vibrations at a consistent frequency despite large, random inputs, thanks to internal resonance, a phenomena that allows certain mechanical systems to dissipate internal energy. The energy could then be captured and stored via power circuitry.
Harne and his colleagues tested the model by building a device made from two steel beams forming an L shape (similar to a trunk and branch) supported by a clamp and fixed to a structure that shook back and forth at high frequencies. The beams were connected by a strip of polyvinylidene fluoride (PVDF) to convert the structural oscillations to electrical energy.




When the device responded to high frequencies, it oscillated with only small amplitudes, barely visible to the naked eye. Nevertheless, it produced about 0.8 volts. But when the researchers added random noise to the system, the tree began displaying what Harne calls "the saturation phenomena." It reached the tipping point where high frequency energy was suddenly channeled into a low frequency oscillation. At this point, the tree swayed back and forth, with the trunk and branch vibrating in sync. This low frequency motion produced around 2 volts of electrical energy, more than double the voltage and enough to achieve proof of concept.
"We introduced massive amounts of noise, and found that the saturation phenomenon is very robust, and the voltage output reliable," Harne said. "That wasn't known before." He hopes to continue to develop the idea.
The study has been published in the Journal of Sound and Vibration.

Comments

Popular posts from this blog

Silent headset lets users quietly commune with computers

Advances in voice recognition technology have seen it become a more viable form of computer interface, but it's not necessarily a quieter one. To prevent the click-clacking of keyboards being replaced by noisy man-machine conversations, MIT researchers are developing a new system called AlterEgo that allows people to talk to computers without speaking and listen to them without using their ears. At first glance, the AlterEgo headpiece looks like the product of a design student who didn't pay attention in class. Instead of the familiar combination of an earpiece and microphone, the device is a cumbersome white plastic curve like the jawbone of some strange animal that hangs off the wearer's ear and arcs over to touch the chin. It might look strange, but it's based on some fairly sophisticated technology. Inside the Alterego are electrodes that scan the jaw and face from neuromuscular signals produced when the wearer thinks about verbalizing words without...

Water purification: Running fuel cells on bacteria to purify water

Researchers in Norway have succeeded in getting bacteria to power a fuel cell. The "fuel" used is wastewater, and the products of the process are purified water droplets and electricity. This is an environmentally-friendly process for the purification of water derived from industrial processes and suchlike. It also generates small amounts of electricity -- in practice enough to drive a small fan, a sensor or a light-emitting diode. In the future, the researchers hope to scale up this energy generation to enable the same energy to be used to power the water purification process , which commonly consists of many stages, often involving mechanical and energy-demanding decontamination steps at its outset. Nature's own generator The biological fuel cell is powered by entirely natural processes -- with the help of living microorganisms. "In simple terms, this type of fuel cell works because the bacteria consume the waste materials found in the water," explains SINTEF...

Harry Potter and the Cursed Child

Small Intro About Harry Potter and the Cursed Child Based on an original new story by J.K. Rowling, Jack Thorne and John Tiffany, Harry Potter and the Cursed Child is a new play by Jack Thorne. It is the eighth story in the Harry Potter series and the first official Harry Potter story to be presented on stage. It was always difficult being Harry Potter and it isn’t much easier now that he is an overworked employee of the Ministry of Magic, a husband and father of three school-age children. While Harry grapples with the past that refuses to stay where it belongs, his youngest son Albus must struggle with the weight of a family legacy he never wanted. As past and present fuse ominously, both father and son learn the uncomfortable truth: sometimes, darkness comes from unexpected places. Harry Potter and the Cursed Child is one play presented in two Parts, which are intended to be seen in order on the same day (matinee and evening) or on two consecutive evenings. ...