Skip to main content

New desalination technique pushes salt to one side with shockwaves

New desalination technique pushes salt to one side with shock waves

As access to clean water continues to be an issue throughout the developing world, there's an increased demand for easier ways to turn contaminated and salty water into something you can drink. Researchers at MIT may have found a solution using a method they are calling shock electrodialysis. It uses electric shock waves to separate contaminated or salty water into two separate streams, with a natural barrier between each one.
The method developed at MIT is unlike most traditional desalination systems that either use some type of membrane less filter that can become clogged over time, or boiling methods that require extensive amounts of energy to produce clean water.




The MIT process sends water through an inexpensive porous material made of tiny glass particles, and across membranes or electrodes sandwiched on each side. As electricity is applied to the system, the salty water divides into zones of depleted or enriched salt concentration. Increasing the current generates a shock wave between the two zones, effectively adding a physical barrier that creates a flow of fresh water on one side and salty or contaminated water on the other.

Researchers involved in developing the process said that the system should be relatively easy to scale up for desalination or decontamination, but that it would not be immediately competitive with current reverse osmosis methods used for large-scale seawater desalination.
They added, however, that there are a number of initial applications for their shock electrodialysis method including decontaminating waste water generated by hydraulic fracturing, or fracking, and creating clean water in remote locations or in emergencies where access to fresh water could be disrupted by natural disasters. The next step is to create a larger system for practical testing.




Earlier this fall, researchers at Alexandria University announced an entirely different method of separation called pervaporization. The commercial viability of that method has also yet to be proven.
Source: MIT




Comments

Popular posts from this blog

Nine government sites hit by cyber attacks: NIC

The National Informatics Center (NIC) has revealed that as many as nine government websites were defaced by recent cyber attacks. The center further said that the servers, which hosts these government sites, suffer a number of hacking attempts on a daily basis. The websites www.kumbh2010haridwar.gov.in, www.ueppcb.uk.gov.in, www.gov.ua.nic.in/ujn, www.cdodoon.gov.in, www.arunachal.nic.in,www.bee-india.nic.in, www.civilsupplieskerala.gov.in, www.mpcb.gov.in and www.informatics.nic.in were  defaced , prompting authorities to  ramp up  the cyber security safeguards. In an RTI reply, the NIC, which reports to the Ministry of Communications and Information Technology, said that it was impossible for the body to accurately quantify these attacks but they are usually blocked by security controls put in place. The Ministry was asked to provide details of hacking attempts made on the governments websites in the last ten years (2001-11) along with url names of the portal...

Google and Stanford early adopters of Honda Fit EV

Honda's first all-electric vehicle is hitting the streets a little early. The  Honda Fit EV  debuted at the Los Angeles Auto Show in November 2011, and it's expected to be     available for lease this summer. However,  Honda announced  that Google and Stanford University got a special early delivery of the tiny EV this week.The Honda Fit EV is equipped with a 20kWh lithium ion battery, and has an EPA estimated driving range of 76 miles. Google added the EV to its  car -sharing service for employees, dubbed the G-Fleet, in    Mountain View, Calif. The search giant maintains several electric and plug-in vehicles that it uses for research and to cart Googlers around town and between buildings on campus. Stanford University also is an early adopter of the Fit EV, but will be using it primarily for research. The university's automotive research department will study the difference in psychological and physical reactions of using battery...

Solar car hits U.S. in round-the-world jaunt

Last October, the SolarWorld GT solar-powered car set out from Darwin, Australia on a drive around the world. It has since driven 3,001 kilometers (1,865 miles) across Australia, logged 1,947 km (1,210 miles) crossing New Zealand and been shipped across the Pacific Ocean. This Friday, it will embark on the U.S. leg of its journey, as it sets out across America from the University of California, Santa Barbara.   The SolarWorld GT is the result of a collaboration between solar panel manufacturer SolarWorld, and Bochum University of Applied Sciences in Germany. The four-wheeled, two-door, two-seat car gathers solar energy through photovoltaic panels built into its roof, with its solar generator offering a peak performance of 823 watts. Custom hub motors are located in both of the front wheels. The vehicle manages an average speed of 50 km/h (31 mph), with a claimed top speed of 100 km/h (62 mph). In order to demonstrate that solar powered cars needn't be a radical...