Skip to main content

Cheap, simple technique turns seawater into drinking water​

Researchers from the University of Alexandria have developed a cheaper, simpler and potentially cleaner way to turn seawater into drinking water than conventional methods.
This could have a huge impact on rural areas of the Middle East and North Africa, where access to clean water is a pressing issue if social stability and economic development is to improve.
Right now, desalinating seawater is the only viable way to provide water to growing populations, and large desalination plants are now a fact of life in Egypt and other Middle Eastern countries.
Most of these plants rely on a multi-step process based on reverse osmosis, which requires expensive infrastructure and large amounts of electricity. These plants release large quantities of highly concentrated salt water and other pollutants back into the seas and oceans as part of the desalination process, creating problems for marine environments.




That’s why the race is on to find a cheaper, cleaner and more energy-efficient way of desalinating sea water.
In a paper published last month in the journal, Water Science & Technology, researchers Mona Naim, Mahmoud Elewa, Ahmed El-Shafei and Abeer Moneer announced that they have developed a new way to purify sea water using materials that can be manufactured easily and cheaply in most countries, and a method that does not rely on electricity.
The technology uses a method of separating liquids and solids called pervaporation. Pervaporation is a simple, two-step process – the first step involves filtering the liquid through a ceramic or polymeric membrane, while the second step requires vaporizing and collecting the condensed water. Pervaporation is faster, cleaner and more energy efficient than conventional methods, not least because the heat required for the vaporization stage does not necessarily have to be electrically generated.
Pervaporation is not new – it has been in use for many years. But the membrane used in step one has been expensive and complicated to manufacture.
The breakthrough in this research is the invention of a new salt-attracting membrane embedded with cellulose acetate powder for use in step one of the pervaporation process. Cellulose acetate powder is a fiber derived from wood pulp and is, according to the researchers, cheap and easy to make in any laboratory.




According to the paper, the membrane can quickly desalinate highly concentrated seawater and purify even badly contaminated seawater. It can also be used to capture pollutants and salt crystals to minimize pollution of the environment. The membrane can be used in very remote situations using fire to vaporize the water.
The researchers have yet to prove the commercial viability of the product, but if they can, it could be a promising alternative for developing countries where water and electricity is a scarce resource.
Source: SciDev

Comments

Popular posts from this blog

Silent headset lets users quietly commune with computers

Advances in voice recognition technology have seen it become a more viable form of computer interface, but it's not necessarily a quieter one. To prevent the click-clacking of keyboards being replaced by noisy man-machine conversations, MIT researchers are developing a new system called AlterEgo that allows people to talk to computers without speaking and listen to them without using their ears. At first glance, the AlterEgo headpiece looks like the product of a design student who didn't pay attention in class. Instead of the familiar combination of an earpiece and microphone, the device is a cumbersome white plastic curve like the jawbone of some strange animal that hangs off the wearer's ear and arcs over to touch the chin. It might look strange, but it's based on some fairly sophisticated technology. Inside the Alterego are electrodes that scan the jaw and face from neuromuscular signals produced when the wearer thinks about verbalizing words without

Qualcomm showcases the Snapdragon S4 ahead of Mobile World Congress

We’ve already heard about Qualcomm’s latest processor, the Snapdragon S4 , which will be quad-core and utilize LTE. Qualcomm took the time to give us some details ahead of Mobile World Congress. The new SoC now supports up to three cameras (two in the back for 3D and one front-facing), 20-megapixels, and recording video at 1080p (30fps). We can also expect zero shutter lag, 3A processing (autofocus, auto exposure and auto white balance), and improved blink/smile detection, gaze estimation, range finding and image stabilization. Last but not least, it supports gesture detection/control, augmented reality , and computer vision (via Qualcomm’s FastCV). Hit the break for a couple of videos featuring image stabilization and gestures.

GitHub launches new mobile app for Android and iOS platforms

Github is one of the leading software development platform in the world that helps developer community to build, discover and share better software. Github, owned by tech giant Microsoft Corporation provides developers with a large number of tools and resources to get their projects off the ground. Github released its new free mobile app for Android and iOS platforms after several months of beta testing. The app is primarily designed to help the developer community to manage their projects when they not using their PC, letting them organize tasks, respond to the comments, give feedback on issues etc.   Github notifications shows up in an inbox like the E Mail notifications, you can swipe to wrap up a task or can save the modifications to come back later. This can be new favourite way for the developers to organize their tasks.  The app features a clean, intuitive, beautiful UI, with all attractive features you would expect from a mobile version of the platform, incl