Skip to main content

Scientists grow fully-functioning organ inside a mouse from scratch

Scientists at the University of Edinburgh have grown a fully-functional organ inside a mouse; opening the possibility of one day manufacturing compatible organs for transplant without the need for donors. Using mouse embryo cells, scientists at the MRC Centre for Regenerative Medicine created an artificial thymus gland with the same structure and function as an adult organ.
Organ transplants are one of the great medical success stories of the 20th century. Where patients once faced disability or even death, they've been given new life in the form of donated organs to replace their damaged or diseased ones. The problem is that the supply of suitable donor organs has always been in a state of severe shortage. For decades, scientists have worked on producing lab-grown organs and even though such research has produced simple organs such as an artificial esophagus and "mini-kidneys," the creation of whole, complex, functional organs has remained out of reach – until now.
The University of Edinburgh team produced the artificial thymus gland using a technique that the scientists call "reprogramming." It involves fibroblast cells, which form connective tissue in animals, being removed from a mouse embryo and then treated with a protein called FOXN1, so that they changed into thymic epithelial cells (iTEC). These were then mixed with other thymus cells and transplanted into living mice by grafting them to the animal’s kidneys.
There, over a period of four weeks, the cells grew into a complete, functioning thymus gland that can produce T cells, which are an important part of the immune system. According to the scientists, the development goes beyond previous efforts because the thymus serves such a key part in protecting the body against infection and in eliminating cancer cells.
The team is currently working on refining the reprogramming technique in the hope of developing a practical medical procedure, such as creating bespoke thymus glands made to match a patient’s own T cells. They see the development of a lab-grown thymus as a way of treating cancer patients whose immune system has been compromised by radiation or chemotherapy, and children born with malfunctioning thymuses.
"Growing 'replacement parts' for damaged tissue could remove the need to transplant whole organs from one person to another, which has many drawbacks – not least a critical lack of donors," says Rob Buckle, Head of Regenerative Medicine at the MRC. "This research is an exciting early step towards that goal, and a convincing demonstration of the potential power of direct reprogramming technology, by which one cell type is converted to another. However, much more work will be needed before this process can be reproduced in the lab environment, and in a safe and tightly controlled way suitable for use in humans.”
The team’s results were published in Nature Cell Biology.

Comments

Popular posts from this blog

Google and Stanford early adopters of Honda Fit EV

Honda's first all-electric vehicle is hitting the streets a little early. The  Honda Fit EV  debuted at the Los Angeles Auto Show in November 2011, and it's expected to be     available for lease this summer. However,  Honda announced  that Google and Stanford University got a special early delivery of the tiny EV this week.The Honda Fit EV is equipped with a 20kWh lithium ion battery, and has an EPA estimated driving range of 76 miles. Google added the EV to its  car -sharing service for employees, dubbed the G-Fleet, in    Mountain View, Calif. The search giant maintains several electric and plug-in vehicles that it uses for research and to cart Googlers around town and between buildings on campus. Stanford University also is an early adopter of the Fit EV, but will be using it primarily for research. The university's automotive research department will study the difference in psychological and physical reactions of using battery...

Hand-manipulated objects and transparent displays - the computer desktop of tomorrow

A see-through screen, digital 3D objects manipulated by hand, perspective adjustments according to the user's viewing angle - these are the core features of a prototype computer desktop user interface created by Microsoft's Applied Sciences Group. The prototype uses a "unique" Samsung transparent OLED display through which the user can see their own hands to manipulate 3D objects which appear to be behind the screen. A demo video appears to show a working prototype of a computer markedly different from those we use today. Yes it includes a familiar keyboard and trackpad - but these are placed behind the OLED display. The user simply lifts their hands from these input devices to manipulate on-screen (or more accurately  behind -screen) objects, such as selecting a file or window. The video shows the interface in action with a series of program windows stacked behind one another, with the user selecting the desired program by hand, using the depth of the w...

Bioengineers develop smart, self-healing hydrogel

Velcro is pretty handy stuff, but imagine if there was a soft, stretchy material with the same qualities. Well, now there is. Scientists from the University of California, San Diego have created a self-healing hydrogel that binds together in seconds, essentially copying the Velcro process at a molecular level. The new material could potentially find use in medical sutures, targeted drug delivery, industrial sealants and self-healing plastics. The secret to the jello-like polymer hydrogel is its "dangling side chain" molecules, that reach out toward one another like long, spindly fingers. When developing the gel, a team led by bioengineer Shyni Varghese ran computer simulations, in order to determine the optimal length for these molecules. The resulting substance is capable of healing cuts made to itself - or of bonding with another piece of hydrogel - almost instantly. The behavior of the material can be controlled by adjusting the pH of its environment. In lab t...