Skip to main content

Desert plants to be put to the test for aviation biofuel production

Whenever the topic of plant-derived biofuels is raised, the issue of turning valuable arable land over to the task of growing feedstock is generally not far behind. A discovery by the Sustainable Bioenergy Research Consortium (SRBC) that desert plants fed by seawater can produce biofuel more efficiently than other well-known feedstocks could help alleviate such concerns.
The SRBC, which is affiliated with the Masdar Institute of Science and Technology in Abu Dhabi, is receiving funding from Boeing, Etihad Airways and Honeywell UOP to develop and commercialize a sustainable biofuel that emits 50 to 80 percent less carbon through its lifecycle than fossil fuels. Plants called halophytes, which are highly salt tolerant, could be the answer.
SRBC researchers found that halophyte seeds contain oil suitable for biofuel production and that the entire shrub-like plant can be turned into biofuel more effectively than many other feedstocks.
To test their findings, the SRBC team will create a test ecosystem over the coming year that will see two crops of halophytes planted in the sandy soil found in Abu Dhabi. The test site will use waste seawater from a fish and shrimp farm to nourish the plants, with the water then flowing into a field of mangroves before being returned to the ocean.
"The UAE has become a leader in researching desert land and seawater to grow sustainable biofuel feedstocks, which has potential applications in other parts of the world," says Dr. Alejandro Rios, Director of the SBRC. "This project can have a global impact, since 97 percent of the earth’s water is ocean and 20 percent of the earth’s land is desert."


Comments

Popular posts from this blog

Solar car hits U.S. in round-the-world jaunt

Last October, the SolarWorld GT solar-powered car set out from Darwin, Australia on a drive around the world. It has since driven 3,001 kilometers (1,865 miles) across Australia, logged 1,947 km (1,210 miles) crossing New Zealand and been shipped across the Pacific Ocean. This Friday, it will embark on the U.S. leg of its journey, as it sets out across America from the University of California, Santa Barbara.   The SolarWorld GT is the result of a collaboration between solar panel manufacturer SolarWorld, and Bochum University of Applied Sciences in Germany. The four-wheeled, two-door, two-seat car gathers solar energy through photovoltaic panels built into its roof, with its solar generator offering a peak performance of 823 watts. Custom hub motors are located in both of the front wheels. The vehicle manages an average speed of 50 km/h (31 mph), with a claimed top speed of 100 km/h (62 mph). In order to demonstrate that solar powered cars needn't be a radical...

Biocomputer, Alternative To Quantum Computers

A team of international scientists from Canada, the U.K., Germany, the Netherlands and Sweden announced Friday that they had developed a model biological supercomputer capable of solving complex mathematical problems using far less energy than standard electronic supercomputers. The model “biocomputer,” which is roughly the size of a book, is powered by Adenosine triphosphate (ATP) — dubbed the “molecular unit of currency.” According to description of the device, published in the  Proceedings of the National Academy of Sciences , the biocomputer uses proteins present in all living cells to function. It uses a strategy similar to that of quantum computers, which use qubits — the quantum computing equivalents of bits — to perform “parallel computation,” wherein  computers are able to process information quickly and accurately by performing several calculations simultaneously, rather than sequentially. In the case of the biocomputer, the qubits are replaced with ...

Qualcomm showcases the Snapdragon S4 ahead of Mobile World Congress

We’ve already heard about Qualcomm’s latest processor, the Snapdragon S4 , which will be quad-core and utilize LTE. Qualcomm took the time to give us some details ahead of Mobile World Congress. The new SoC now supports up to three cameras (two in the back for 3D and one front-facing), 20-megapixels, and recording video at 1080p (30fps). We can also expect zero shutter lag, 3A processing (autofocus, auto exposure and auto white balance), and improved blink/smile detection, gaze estimation, range finding and image stabilization. Last but not least, it supports gesture detection/control, augmented reality , and computer vision (via Qualcomm’s FastCV). Hit the break for a couple of videos featuring image stabilization and gestures.